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INTRODUCTION: Deep-learning methods to pre-
dict protein structures, like AlphaFold2 (AF2)
and RosettaFold, have had great impact on
structural biology, but their influence on drug
discovery is less clear. Recent retrospective dock-
ing studies suggest that AF2 models struggle to
recapitulate ligand binding modes and to distin-
guish active from decoy molecules in ligand dis-
covery simulations, compared with the same
calculations on experimental structures. Still,
these studies are retrospective; how AF2 models
perform prospectively for predicting new ligands
has not, to our knowledge, been explored.

RATIONALE: To address this prospective gap,
we selected two therapeutic targets for which
the AF2models appeared before the experimen-
tal structures were released: the s2 and sero-
tonin 2A (5-HT2A) receptors. Whereas the AF2
model resembled experimental structures over-
all, there were meaningful conformational dif-
ferences in residues at the ligand binding sites,
particularly for the 5-HT2A receptor. To pro-
spectively test the relative ability of the AF2
models to guide the discovery of new ligands,
we docked libraries of hundreds of millions to
billions ofmolecules against both themodeled

and the experimental structures, prioritizing
for synthesis and testing hundreds of high-
ranking molecules for each model and struc-
ture. We assessed the performance of the AF2
structures versus the experimental structures
by hit rate (number experimentally active per
number tested) and by hit potency.

RESULTS: Surprisingly, prospective docking
against the AF2 models was as effective as it
was for docking against the experimental struc-
tures. For the s2 receptor, 55% of the AF2-
derived docking hits were active at 1 µM,
whereas docking against the crystal structure
led to a 51% hit rate. For the 5-HT2A receptor,
26% of the molecules from the AF2-derived
model bound at 10 µM, whereas for the cryo–
electron microscopy (cryo-EM) structure, 23%
bound. Comparing the affinities of these hits
yielded similar conclusions. Against the s2 re-
ceptor, the top 18 hits from the AF2 docking
had inhibition constant (Ki) values between
1.6 and 84 nM, similar to the distribution from
docking against the receptor crystal structure.
Against the 5-HT2A receptor, the AF2 model
led, if anything, to more potent and selective
compounds compared with docking against
the experimental structure. The most potent
AF2-derived agonists had median effective con-
centration (EC50) values ranging from 42 nM to
1.6 µM, whereas the cryo-EM–derived docking
hits had EC50 values ranging from 246 nM to
3 µM. Three of the AF2-derived docking hits
were subtype selective, whereas the cryo-EM–
derived docking hits were not. A cryo-EM struc-
ture of an AF2-derived agonist bound to the
5-HT2A receptor superposed well with the
docking prediction and supported several resi-
due conformations anticipated by the AF2
model that differed from those observed in
the original experimental structure.

CONCLUSION: Differences in the ligand bind-
ing sites between AF2 models and experimen-
tal structures may reduce the ability of the
models to recognize known ligands. For a
subset of AF2 models, however, these differ-
ences may represent low-energy, alternate
receptor conformations that can guide the
discovery of new ligands just as well as ex-
perimental structures can, potentially expand-
ing the range of proteins that may be targeted
for structure-based drug discovery.▪
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AF2 structures template prospective ligand discovery. More than 490 million and 1.6 billion molecules were
docked against the AF2 and experimental structures for the s2 and 5-HT2A receptors, respectively. More than 100 high-
ranking molecules were prioritized for synthesis and testing for each model and structure (about 500 total molecules).
Judging by hit rate and hit affinity, docking against the AF2 models was as effective as docking against the experimental
structures. The cryo-EM structure of the agonist Z7757 in complex with the 5-HT2A receptor superposed closely with
the computational docking prediction on the AF2 model. IC50, median inhibitory concentration; NA, not applicable; PDB,
Protein Data Bank; RMSD, root mean square deviation. Single-letter abbreviations for the amino acid residues are as
follows: D, Asp; E, Glu; H, His; I, Ile; L, Leu; Q, Gln; S, Ser; T, Thr; and Y, Tyr.
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AlphaFold2 (AF2) models have had wide impact but mixed success in retrospective ligand recognition.
We prospectively docked large libraries against unrefined AF2 models of the s2 and serotonin 2A
(5-HT2A) receptors, testing hundreds of new molecules and comparing results with those obtained from
docking against the experimental structures. Hit rates were high and similar for the experimental and
AF2 structures, as were affinities. Success in docking against the AF2 models was achieved despite
differences between orthosteric residue conformations in the AF2 models and the experimental
structures. Determination of the cryo–electron microscopy structure for one of the more potent 5-HT2A
ligands from the AF2 docking revealed residue accommodations that resembled the AF2 prediction.
AF2 models may sample conformations that differ from experimental structures but remain low energy
and relevant for ligand discovery, extending the domain of structure-based drug design.

S
tructure-based library docking is widely
used in early ligand discovery (1); on
targets with well-formed binding sites
(2, 3), the affinities of direct docking
hits can reach themid-nanomolar or even

high picomolar range (4–13). These docking
campaigns havemostly relied on experimental
protein structures from crystallography or,
more recently, cryo–electron microscopy (cryo-
EM), but for many drug targets (14), such exper-
imental structures remain unavailable. In these
cases, homology models have been used (15–17).
These models show promise, particularly when

the sequence identity between the target and
template exceeds 50% (18). Many targets are
outside of this range, and docking against
homology models is often thought to reduce
performance relative to docking against exper-
imental structures.
Recent breakthroughs in protein structure

predictions, led by deep-learningmethods such
as AlphaFold2 (AF2) (19) and RosettaFold (20),
promise to overcome this limitation. AF2 has
demonstrated an unprecedented ability to pre-
dict protein structures with atomic accuracy
(19) and operates at scale (21, 22). As of this
writing, the AlphaFold database features pro-
tein structures for the human proteome and
for those of 47 other organisms, coveringmore
than 200 million proteins and nearly all po-
tential therapeutic protein targets. These struc-
tures have proven very useful for applications
in structural biology (23–25), protein design
(26, 27), protein-protein interaction (28–30),
target prediction (31, 32), protein function pre-
diction (33, 34), and biological mechanism of
action (35–37).
The impact of AF2 structures on structure-

based ligand discovery has been murkier. Al-
though the global accuracy of the models has
been impressive, concerns have arisen regard-
ing their accuracy in modeling ligand binding
sites (38), where high fidelity to low-energy
conformations is thought to be crucial, and
small errors, relatively unimportant for other
applications, can disrupt ligand recognition
and pose prediction. Indeed, retrospective
studies have suggested that docking against
unrefined AF2 models struggles to recognize
and pose known ligands compared with decoy
molecules and performs better against exper-

imental structures in equivalent comparisons
(7, 39–48). A drawback to these studies is that
they arebiasedby thepast; that is, known ligands
can affect the conformations adopted by ex-
perimental structureswhen they aredetermined
in complex with them, whereas experimental
structures can influence the exploration of new
ligands. Thus, it is possible that the relatively
poor performance of AF2 models in retrospec-
tive simulation of structure-based ligand dis-
covery may underestimate the ability of AF2
structures to template new ligand discovery
prospectively. To test this idea, we docked iden-
tical ultralarge libraries against the unrefined
AF2models of thes2 and serotonin2A (5-HT2A)
receptors and against experimental structures
of these two receptors. Hundreds of molecules
that were highly ranked by docking were syn-
thesized against each of the four structures, and
hit rates and ligand affinities were compared.

Results
Assessing AF2 predictions

For the s2 and 5-HT2A receptors, AF2 models
had been predicted before the crystal struc-
tures were released, reducing possible bias.
These two receptors belong to two unrelated
protein families, the EXPERA and G protein–
coupled receptors (GPCRs), respectively. In both
models, AF2 predicted uncollapsed binding
sites, unlike several other targets where we
judged the AF2-predicted binding sites to be
too compressed to support ligand fitting (fig.
S1). For instance, superposition of an exper-
imental ligand-receptor complex on the AF2
model of the MRGPRX4 receptor resulted in
4 of 26 ligand atoms clashing with the surface
of themodeled receptor, reflecting the collapse
of the orthosteric site in the model. For the s2
receptor, the AF2 structure recapitulated the
side-chain conformations of all orthosteric
site residues to 1.1-Å root mean square devia-
tion (RMSD) versus the crystal structure, with
few residues with individual RMSD values
greater than 1.5 Å (Fig. 1). For the 5-HT2A re-
ceptor, although most binding site residues
were well predicted (RMSD <2 Å versus the
cryo-EM structure), two residues differed by
2.5- to 3.1-Å RMSD, adopting different rotamers
(Fig. 1). Both the experimental structures and
the AF2models of the s2 and 5-HT2A receptors
had sites that were judged ligandable by the
widely used SiteMap program (49) (scores were
1.3 and 1.2 for the s2 crystal structure and AF2
model orthosteric sites, respectively, and 1.2 for
both the cryo-EM and AF2 structures of the
5-HT2A receptor orthosteric site; numbers
>1 are favorable for ligand binding). Thus, the
s2 and 5-HT2A receptors occupy two of what
are perhaps three categories of AF2models for
ligand discovery: (i) those that are close to the
experimental ligand binding site but still har-
bor meaningful side-chain differences, (ii) those
that are overall close but have several residues
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in substantially different conformations, and
(iii) those for which themodeled sites differ so
much from the experimental sites as to pre-
clude ligand recognition without extensive re-
finement (fig. S1).

Retrospective docking of known ligands against
the AF2 structures

We began by docking known ligands against
the AF2 models of the s2 and 5-HT2A recep-
tors using DOCK3.8 (50, 51), which samples
flexible ligands in millions of poses, scoring
each for physical fit to a predefined site, which is
typically kept rigid. In DOCK3.8, ligand-protein
fit is evaluated by calculating both electrostatic
interactions using a probe-charge model of
the Poisson-Boltzmann equation (51, 52) and
van der Waals interactions by adapting the
AMBER potential function (52) and then cor-
recting these terms for ligand desolvation
(50, 53) and for ligand conformational strain
(54). Other docking programs often model
similar energy terms (55–58).

Our approach to these retrospective calcula-
tions took two forms: (i) taking ligands found
from our previous docking campaigns against
the experimental structures of the two recep-
tors and redocking them against the AF2mod-
els and (ii) docking previously known ligands
from the general literature (which do not in-
clude the docking-derived ligands). Against
the crystal structure of the s2 receptor, we
had previously screened (7) 490 million make-
on-demand (“tangible”) molecules from the
ZINC20 library of dockable molecules (59).
From among the top-ranking 300,000 mol-
ecules (top 0.06% of the ranked library), we
tested 138 high-scoring ones by radioligand
competition, of which 70 displaced more
than 50% of the known ligand [3H]-DTG at
1 mM, a hit rate of 51% (7) (Fig. 2A, left). The
best 21 actives had inhibition constant (Ki)
values between 1.8 nM and the low-mM range,
with 19 having Ki values <50 nM and six hav-
ing Ki values <5 nM (7) (Fig. 2B). When we
redocked the same 490 million–molecule li-

brary against the AF2 model of s2, the ranks
of these same 138 formerly high-ranking mol-
ecules dropped so far that they were no longer
among the top 300,000. This may reflect the
slight shrinking of the AF2 orthosteric site
compared with the crystal structure orthos-
teric site, which dropped to a calculated (49)
213 from 268 Å3, respectively. Correspond-
ingly, when docking known s2 ligands from
the ChEMBL database versus a library of
property-matched decoys—a widely used con-
trol in docking—the crystal structure (logAUC
of 39; AUC, area under the curve) returned
much higher enrichments than did the AF2
model (logAUC of 16; fig. S2A). Related retro-
spective studies against the cryo-EM and AF2
structures of the 5-HT2A receptor had sim-
ilar results: The experimental structure led
to higher retrospective enrichment of 41 known
ligands over property-matched decoys for the
experimental structure than it did for the AF2
structure (fig. S2B). These observations are con-
sistent with previous retrospective studies that

Fig. 1. Structural comparisons
of the AF2 predicted structure
and experimental structure
for the s2 and 5-HT2A receptors.
The s2 receptor is shown in the
left column and the 5-HT2A
receptor in the right column.
(A and B) The experimental structure
(7) (cyan) is overlaid with the
AF2 predicted structure (yellow).
The RMSD values were calculated
based on backbone atoms. The
ligand binding site residues were
selected within a 5-Å distance from
the ligand. In (B), two residues with
large conformational differences
between the AF2 and experimental
structures used in docking, L229
and F234, are highlighted in orange
for the 5-HT2A receptor. (C) The full-
atom RMSD values of the binding
site residues between the AF2 and
the experimental structures. Single-
letter abbreviations used in the
figures for the amino acid residues
are as follows: C, Cys; D, Asp; E, Glu;
F, Phe; G, Gly; H, His; I, Ile; L, Leu; M,
Met; N, Asn; Q, Gln; S, Ser;
T, Thr; V, Val; W, Trp; and Y, Tyr.

A

B
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compared AF2 models with experimental struc-
tures for ligand discovery (7, 39–48).

Prospective docking against the s2

AF2 structure

A potential flaw in the retrospective logic is
that the ligands chosen are biased by the re-
ceptor structure, and the receptor conforma-
tion is adapted to the ligands with which it
was determined. For instance, the 70 new li-
gands that emerged from docking against the
crystal structure of s2 (7) fit that structure
better than the AF2model, and even ChEMBL
ligands share this bias of the known. Indeed,
both the experimental structures and the AF2
models of the s2 and 5-HT2A receptors had sites
that were judged ligandable by SiteMap (49)
(scores were 1.3 and 1.2 for the s2 crystal struc-
ture andAF2model orthosteric sites, respectively,
and 1.2 for both the cryo-EM and AF2 structures
of the 5-HT2A receptor orthosteric site; numbers

>1 are favorable for ligand binding). A second
potential flaw is that these retrospective con-
trol calculations are limited to the chemotypes
of the known ligands and do not necessarily
predict outcomes for new chemotypes explored
in an unbiased large library. Thus, it is con-
ceivable that even though the AF2 structures
are worse at recapitulating known actives, they
might still prioritize new ligands from large-
library docking.
To investigate this possibility, we docked the

same 490 million–molecule tangible library
against the s2 receptor’s AF2 model (as men-
tioned above), selecting 119 new molecules
from the top 300,000 docked for synthesis
and testing (table S1). Of these, 64 molecules
displaced over 50% [3H]-DTG–specific s2 bind-
ing at 1 mM, a hit rate of 54%. Although slightly
higher than the 51% observed in the crystal
structure docking campaign, the two hit rates
were not significantly different based on a z-test.

The top 18 hits from the AF2 campaign had Ki

values between 1.6 and 84 nM,with 13 havingKi

values <50 nM and two with Ki values <5 nM
(Fig. 2B and fig. S3). Although the highest af-
finity is comparable between the screens for the
crystal and AF2 structures, the affinity distribu-
tion is slightly better for the crystal structure
campaign. Intriguingly, despite the similar-
ities in hit rates and affinity ranges, only one of
the 134 new ligands shared even the same core
scaffold between the crystal structure and AF2
campaigns (fig. S4), and none of the ligands
between the two campaigns were the same. By
ECFP4-based Tanimoto coefficient (Tc) analy-
sis, the two sets of experimentally confirmed
ligands have an average Tc of 0.32, not far from
random for this fingerprint. Consistent with the
diversity, the most potent ligand from the AF2
campaign, ZINC866533340 (Ki of 1.6 nM), rep-
resented a chemotype previously unseen for
the s2 receptor (Fig. 2, C and D).

Fig. 2. Comparison of prospec-
tive screens against the crystal
and AF2 structures of the s2
receptor. (A) The same 490
million molecules from ZINC20
were screened against both
the crystal and AF2 structures of
the s2 receptor. From these,
138 molecules from the crystal
docking campaign and 119 from
the AF2 docking campaign
were synthesized and tested in a
radioligand displacement assay.
The campaign involving the
crystal structure has already been
published. The data shown on
the left were replotted based
on the previously published dataset.
Displacement of the radioligand
[3H]-DTG by each tested molecule
occurs at 1 mM (mean ± SEM of
three technical replicates). The
horizontal dashed lines indicate
50% radioligand displacement.
Bars below the dashed lines
represent confirmed binders, which
are colored in blue. (B) The
distribution of binding affinity
levels among the hits from both
the AF2 and crystal structure
screens. We measured competition
binding curves for the top 21 docking
hits from the crystal structure
screen and the top 18 hits from the
AF2 structure screen. These hits
are categorized into three affinity
ranges: <5 nM, 5 to 50 nM, and
>50 nM. (C) The docked poses of
the best binder from the screen
against the AF2 model. (D) The competition binding curve of the best binder from (C) against the s2 receptor. The data are represented as mean ± SEM from three
technical replicates. Mean values and standard error are available in data S1.

A
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As an aside, although all molecules tested
against the s2 AF2 model ranked among the
top 0.06% of the docked library, about half of
those prioritized were human-picked from
among this pool, and about half were simply
picked by dock score, as was true for the cam-
paign against the crystal structure (7) (see Ma-
terials and methods). In docking against the
AF2model, hit rates for high-ranking molecules
prioritized both by score and by human selec-
tion were not statistically different from those
picked simply by rank order. We do note that
the three hits with Ki values better (lower) than
10 nM were from human prioritization (fig.
S3), but whether this is significant or not is
uncertain because we only determined full Ki

values for 18 molecules overall, and most AF2-
derived and crystal structure–derived ligands
were interleaved by Ki.

Prospective docking against 5-HT2A experimental
receptor structure and the AF2 model

We further investigated using AF2 structures
for prospective ligand discovery by targeting
the 5-HT2A receptor, a widely studied drug
target for depression and for psychedelic ex-
perience (60). Here, the AF2 model presented
potentially greater challenges for docking than
the AF2 model of the s2 receptor, with larger
binding-site conformational differences. As
with the s2 receptor, we compared prospec-
tive docking success against the AF2 model
with that of an experimental structure. For the
latter, we used the complex of the 5-HT2A re-
ceptor with the partial agonist lisuride and
with mini Gaq (fig. S5). Lisuride is a potent
and nonpsychedelic partial agonist, and its
structure seemed suited to longstanding ef-
forts to discover previously unknown non-
psychedelic 5-HT2A agonists (61). Because the
structure of the lisuride–5-HT2A–mini-Gaq
structure has not been previously described,
we briefly do so here.
To isolate an active-state heterotrimeric com-

plex, we used a mini-GaqiN–Gb1–Gg2 hetero-
trimer coexpression system in the presence of
stabilizing single-chain antibody scFv16 (62).
Each component was purified separately, and
the active-state complexwas formed in the pres-
ence of lisuride. We subjected this complex to
single-particle cryo-EM analysis and built a
consensus reconstruction at 3.1 Å through
multiple steps of three-dimensional (3D) clas-
sification and focused refinement (fig. S5). The
definition of the cryo-EM density allowed us
to unambiguously model lisuride within the
orthosteric pocket (table S2) with the binding
pose validated by Gemspot (63). The global
structural features were consistent with previ-
ous 5-HT2A ternary complex cryo-EM recon-
structions and with other receptor-Gaq–bound
structures (64–67). In this active-state structure,
lisuride recapitulates many interactions seen
in an inactive-state crystallographic complex

(68) [Protein Data Bank (PDB) ID 7WC7], with
some important differences. As in the crystal
structure, lisuride’s indole hydrogen-bonds with
S2425.46, its cationic nitrogen ion-pairs with
D1553.32, and its diethylamidepackswithW1513.28

(fig. S6) [superscripts use Ballesteros-Weinstein
andGPCRdb (69) nomenclature (70); S, D, and
W indicate Ser, Asp, and Trp, respectively].
Unlike the casewith the s2 receptor, the AF2

model of the 5-HT2A receptor exhibited no-
table rotamer changes in several orthosteric
site residues comparedwith the cryo-EM struc-
ture. Overall, the backbone RMSD between
modeled and experimental structures was
1.6 Å (compared with 0.5 Å for s2). Although
most orthosteric residues had an RMSD <1.5 Å,
key residues F2345.38 on transmembrane helix 5
(TM5) and L22945.52 on the extracellular loop 2
(ECL2) loop differed by 2.5 and 3.1 Å, respec-
tively, adopting different rotamers in the two
structures (Fig. 1, right) (F, Phe; L, Leu). Also,
W1513.28 is pushed outward in the lisuride
cryo-EM structure (PDB ID 8UWL) versus the
AF2model, owing to packing with the ligand’s
diethylamide. These differences shrink the
orthosteric pocket in the AF2model compared
with that of the lisruide cryo-EM structure used
in the docking, from 816 Å3 in the experimental
structure to 732 Å3 in the AF2 model. Because
the AF2 model draws on sequence similarity
from an overall family of related 5-HT receptors,
and because the cryo-EM structure represents
an active state of the receptor in complex with
Gaq, whereas the AF2 model more closely re-
sembles an inactive state (fig. S7), we anticipated
that the experimental structurewould bemore
likely to select agonists that are 5-HT2A selec-
tive and Gaq biased. However, both docking
campaigns targeted residues key for agonist
recognition, key for bias, and key for subtype
selectivity (71) (S239, S242, T160, F234, andF339;
T, Thr). In this sense, both docking campaigns
were biased toward finding 5-HT2A agonists.
More than 1.6 billion tangible molecules were

docked against both the cryo-EM and AF2 re-
ceptor structures, again using DOCK3.8. We
considered the top 3 million (top 0.2%) mol-
ecules from docking against each structure,
applying consistent filtering, clustering, and
hit-picking criteria for both structures to re-
duce these to a set of prioritized molecules for
synthesis and testing (e.g., we only picked mol-
ecules topologically unrelated to known 5-HT2A
ligands, we insisted that the molecules picked
were topologically diverse among themselves,
and we excluded molecules that buried un-
compensated hydrogen-bond donors; see
Materials and methods). Ultimately, 223 high-
ranking molecules docked against the cryo-
EM structure and 161 high-ranking molecules
docked against the AF2 structure were synthe-
sized (table S3).
In primary radioligand binding screening

assays, 51 of the 223 molecules from docking

against the cryo-EM structure displaced more
than 50% [3H]–lysergic acid diethylamide ([3H]-
LSD) at 10 mM of the docked ligand (Fig. 3, A
and B, left), a hit rate of 23%.Meanwhile, 42 of
the 161 molecules from docking against the
AF2 model met this threshold, a hit rate of
26% (Fig. 3, A and B, right). Applying a stricter
criterion, where displacement greater than
90% [3H]-LSD at 10 mM defines a potentially
potent hit, the rates were 4% (eight hits per
223 tested) and 6% (nine hits per 161 tested)
for docking against the cryo-EM and the AF2
structures, respectively. In secondary radio-
ligand binding assays, these top 17 hits had Ki

values between 15 and 344 nM (fig. S8 and
table S4). Unexpectedly, the three compounds
with the highest affinities (15 to 24 nM) were
all from the AF2 docking campaign, whereas
the three best compounds from the cryo-EM
docking campaign displayed affinities about
fivefold weaker (between 71 and 114 nM) (fig.
S8 and table S4). Although theAF2 docking hit
rates are higher, they do not differ significantly
from the experimental docking hit rates based on
a z-test. Meanwhile, of the 93 active molecules
from both campaigns, no two shared the even
same scaffold (fig. S4, bottom), and the Tc aver-
age pairwise similaritywas0.27, close to random.
We next screened the 338 docking-prioritized

molecules from both campaigns for functional
activity (i.e., agonism or antagonism); for sub-
type selectivity among the 5-HT2A, 5-HT2B, and
5-HT2C receptors; and for ligand bias for either
Gaq activation or b-arrestin2 recruitment.
Because of the large number of compounds,
this was initially done at a single concentration
and then subsequently in full concentration-
response results for the more interesting com-
pounds. After treatment with 3 mM of each
compound, 10 compounds from the cryo-EM
docking set and six from the AF2 docking set
emerged as 5-HT2A agonists, defined by ≥10%
5-HT response (Fig. 3C). We also observed 10
compounds (five cryo-EM and five AF2) and
six compounds (three cryo-EM and three
AF2) that were 5-HT2B and 5-HT2C agonists
(fig. S9). When screened for antagonist activ-
ity at 3 mM, five compounds (one cryo-EMand
four AF2) antagonized 5-HT2A receptor activity,
as defined by ≥20% clozapine activity (Fig. 3D).
Additionally,we found 17 compounds (10 cryo-EM
and seven AF2) and one compound (cryo-EM)
with antagonist activity at the 5-HT2B and
5-HT2C receptors, respectively (fig. S9). Com-
parisons of our primary binding data (Fig. 3B)
with our functional screening data (Fig. 3, C
and D) indicate that two of the top 17 binding
hits exhibit 5-HT2A agonist activity (fig. S8 and
table S4), whereas 15 antagonize 5-HT2A activ-
ity. Notably, both of the high-affinity agonists
(Z2504 and Q2118) were from the AF2 dataset.
Dose-response curves measuring calcium

mobilization confirmed 5-HT2A agonist activity
of the top hits from both the cryo-EM and
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AF2 docking sets (Fig. 4, A and B, top). The
potencies [negative logarithm of the median
effective concentration (pEC50) values] of top
agonists from the cryo-EM docking set ranged
from 246 nM to 3 mM, whereas those from
the AF2 docking set ranged from 42 nM to
1.6 mM (Fig. 4 and table S5). Three of the top
five AF2 agonists (Q2118, Z7757, and Z2504)
displayed subtype selectivity for the 5-HT2A
receptor over the 5-HT2B and 5-HT2C recep-
tors (Fig. 4B). Meanwhile, none of the top
cryo-EM agonists displayed 5-HT2A recep-
tor selectivity. Thus, in full-concentration
response, it was the AF2-derived agonists that
emerged as the most potent and selective
molecules.
In bioluminescence resonance energy trans-

fer (BRET) experiments measuring heterotri-
meric Gaq protein dissociation, which reflects
G protein activation (72) versus b-arrestin2
recruitment (fig. S10 and table S5), nine of the
top 10 agonists from both docking sets exhib-
ited modest bias toward Gaq signaling versus

5-HT, whereas only one compound showed
modest bias toward b-arrestin2 recruitment at
high concentrations. Similar experiments with
the top antagonist hits identified from pri-
mary (fig. S9) and functional screening (fig.
S11) confirmed weak inhibition of 5-HT2A
receptor activity, where the potencies of an-
tagonists from the cryo-EM docking set were
between 13 and 78 mM, whereas those from
the AF2 docking set were between 907 nM
and 114 mM (fig. S12 and table S6).

Controls for nonspecific binding

One reason why the hit rates for docking against
theAF2models and the experimental structures
might resemble each other is if many of the
actives are promiscuous and artifactual. To
control for this, 36 of the more potent li-
gands from all four campaigns were counter-
screened against an unrelated GPCR, the V1A
vasopression receptor; none of themwere active
as either agonists or antagonists (fig. S9). Of
these 36 molecules, 30 were also tested for

colloidal aggregation, perhaps the single-most-
common mechanism for promiscuous activity
(73, 74). This was done by measuring particle
formation by dynamic light scattering (DLS)
and by measuring inhibition of the counter-
screen enzyme malate dehydrogenase (MDH).
At 31.6 mM, typically more than 10-fold higher
than their on-target activities, none of the 30
formed particles by DLS (fig. S13, B and C) nor
did any substantially inhibit the widely used
counter-screening enzyme MDH (fig. S13A),
which is inconsistent with a colloidal mecha-
nism of action. These results support a non-
promiscuous mechanism of action for at
least the more potent of the ligands found
in these studies, though naturally they do not
prove it.

Cryo-EM structure of an AF2-derived ligand
bound to the 5-HT2A receptor

To investigate the molecular basis of recogni-
tion for agonists found by docking against
the AF2model, we determined a new cryo-EM

Fig. 3. Comparison of prospec-
tive screens against the cryo-EM
and AF2 structures of the
5-HT2A receptor. (A) The same
set of 1.6 billion molecules
from ZINC22 were docked against
the cryo-EM and AF2 structures
of the 5-HT2A receptor. Of these,
223 molecules were prioritized
from the cryo-EM docking campaign
(left) and 161 from the AF2 docking
campaign (right). (B) Displacement of
the radioligand [3H]-LSD by each
molecule at 10 mM (mean ± SEM of
three independent replicates). The
horizontal dashed lines indicate
50 and 90% radioligand displace-
ment, respectively. (C) The Ca2+

mobilization functional assay in
agonist mode. Each compound was
tested at a concentration of 3 mM.
the horizontal dashed lines indicate
agonism equivalent to 10% 5-HT
activity. Data are presented as
mean ± SEM from three biological
replicates. (D) The Ca2+ mobilization
functional assay in antagonist mode.
Each compound was tested at a
concentration of 3 mM. The dashed
lines indicate antagonism equivalent
to 20% clozapine activity. Data
are presented as mean ± SEM from
three biological replicates. Mean
values and standard error are
available in data S2.

Cryo-EM structure AF2 structure

1.6B
Molecules

DOCK3

A

B

C

D

223 tested 161 tested

51 hits 42 hits
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structure with one of the selective agonists
from the AF2 screen, Z7757, bound to the re-
ceptor in complex with mini-Gaq (Fig. 5B).
This molecule had little topological similarity
to the 5-HT2A receptor agonists of whichwe are
aware. The 5-HT2A receptor was coexpressed
with mini-GaqiN–Gb1–Gg2 heterotrimer and
purified in the presence of Z7757 and of scFv16,
as previously described (66, 75, 76). This per-
mitted direct isolation of the complex, and a
single size-exclusion step afforded us a large
amount of complex for grid preparation. Purified
complexes were subjected to single-particle cryo-
EM analysis (fig. S14), during which particles
that did not contain scFv16 were filtered out by
2D-3D classification and a focused no-alignment
3D classification and refinement on the receptor
was carried out. The structure was determined
to a global resolution of 3.0 Å, allowing us to
unambiguously build Z7757 within the ortho-

steric pocket (Fig. 5B). We further validated the
binding pose with Emerald (fig. S15), which
uses a genetic algorithm to fit the ligand using
the cryo-EM density map as restraints (77). The
Ca-RMSD of the receptor was close to that of
the active-state lisuride structure (0.78 Å) and
recapitulated the receptor-Gaq interactions in
prior 5-HT2A receptor structures (60, 61, 66, 75)
(Fig. 5C).
The binding of Z7757 to 5-HT2A in the new

cryo-EM structure resembles the pose pre-
dicted by docking. As anticipated in the docked
model, Z7757 interacts with key recognition
and activation residues (Fig. 5, D to F), and the
docked pose of Z7757 superposes on the exper-
mental result with an RMSD of 1.6 Å. The ma-
jor difference between the two poses comes from
a 44° rotation of the agonist’s distal pyrimidine
ring (Fig. 5G). In both the docking prediction and
the cryo-EM structure, the new agonist uses its

phenolic hydroxyl to hydrogen-bond with well-
known activation residues on TM3 and TM5
(T1603.37 and S2425.46) and also with the back-
boneofG2385.42 (G,Gly), an interactionpredicted
in the docking but unusual among 5-HT2A re-
ceptor agonists. As expected, the cationic nitro-
gen of Z7757 ion-pairs with the key recognition
D1553.32 of 5-HT2A, whereas the molecule over-
all packs well with the binding sites in both the
modeled and experimental structures.
Stepping back from the local interactions

between Z7757 and receptor, it was interesting
to consider how the AF2model compares with
the new cryo-EM structure in regions where
we expected important differences. Orthosteric
site residues L22945.52, F2345.38, and W1513.28

adopt different positions and even rotamers in
the AF2 model compared with the cryo-EM
active-state structure against whichwe docked
as the experimental structure, with residue
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Fig. 4. Dose-response curves of the top agonists against the 5-HT2A, 5-HT2B, and 5-HT2C receptors. Top agonists from both docking campaigns were tested at the
5-HT2A (blue), 5-HT2B (red), and 5-HT2C (green) receptors. (A) Data from functional assays measuring calcium mobilization (top) and Gaq protein dissociation or b-arrestin2
recruitment (bottom) for the top four agonists from the cryo-EM docking campaign. Fit parameters for each compound can be found in table S5. (B) Data from functional assays
measuring calcium mobilization (top) and Gaq protein dissociation or b-arrestin2 recruitment (bottom) for the top five agonists from the AF2 docking campaign. For (A) and (B), the
chemical structure of each compound is displayed below its respective dose-response curve. Data are presented as mean ± SEM from three biological replicates.
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RMSD values of 2.5, 3.1, and 1.6 Å, respec-
tively. The rotamer of F2345.38 in the new Z7757-
bound cryo-EM structure closely resembles
that in the lisuride-bound cryo-EM structure
against which we docked (Fig. 5I). Although
this is a rotamer that the AF2 model failed to
anticipate, F2345.38 is distant from the new
agonist in the Z7757 complex, with their closest

approach being 5.9 Å, reducing the impact of
this residue on recognition. Intriguingly, the
overall position of L22945.52 in the Z7757 com-
plex more closely resembles its position in the
AF2 model, which we docked against to find
Z7757, than its position in the cryo-EM of the
lisuride–5-HT2A structure, which we used in
the experimental docking screen (Fig. 5I).

Finally,W1513.28 in theZ7757 complexmore close-
ly resembles the lisuride cryo-EM structure used
in the experimental structure docking than
the AF2 model. Nevertheless, W1513.28 has still
swung inward versus its position in the lisuride–
5-HT2A cryo-EM (experimental) structure used
for docking—in the AF2 model, this pocket-
constricting rotation is further exaggerated.
The constriction of this part of the orthosteric
site reduces the complementarity of LSD-like
ligands, including lisuride and many others
characterized for the 5-HT2A receptor while
still allowing the pyrimidine of Z7757 to fit
well (Fig. 5I). Indeed, among the 5-HT2A struc-
tures deposited in the PDB, W1513.28 adopts a
range of conformations, opening and closing
this part of the site, with the active-state lisuride
complex adopting the most open position of
the set (fig. S16, A to C). Meanwhile, both a non-
classical agonist (R-69, PDB ID 7RAN) (fig. S16B)
and an antagonist (zotepine, PDB ID 6A94)
exhibited rotamers of W1513.28 that resemble
the rotamer adopted in the AF2 model (fig.
S16C). We also found that all of the crystal
structure ligand complexes with the 5-HT2A
receptor, except the complex with LSD (PDB
ID 6WGT), have F2345.38 in a conformation
akin to that of the AF2 models used for the
docking, whereas the cryo-EM structures have
consistently exhibited the altered orientation
(fig. S16A). Taken together, these observations
support the idea that the AF2 model sam-
pled low-energy states of these residues, even
though they differ from the particular con-
formations seen in the structure that was used
for the second 5-HT2A receptor docking cam-
paign (i.e., docking against the “experimental”
structure).

Discussion

Contrary to our expectations, the prospective
large-library docking campaigns against the
AF2 models were no less effective than those
against experimental structures. The hit rates
were high for both the s2 and 5-HT2A recep-
tors across hundreds of molecules that we
experimentally tested against each structure
and were not significantly different between
the AF2-modeled and the experimental struc-
tures. Comparing the affinities of these mole-
cules yielded similar conclusions. Indeed, against
the 5-HT2A receptor, the AF2 structure led, if
anything, to more potent and selective com-
pounds, with the mid-nM EC50 values of the
docking hits ranking among the most potent
and selective molecules to emerge from exten-
sive structure-based campaigns (61) against this
target. A cryo-EM structure of one of these new
agonists, Z7757, largely confirmed the modeled
prediction: The docking prediction superposed
well with the position in the new cryo-EM
structure (Fig. 5G), and even some of the key
structural differences between the original
AF2 model and the lisuride–5-HT2A cryo-EM

Fig. 5. Structural characterization of the 5-HT2A receptor in complex with lisuride and Z7757.
(A and B) Maps of lisuride (A) and Z7757 (B) active-state heterotrimers. Models of the compounds built
into the electron density are shown. (C) Overlay of the lisuride and Z7757 structures, which superpose
to 0.78-Å Ca-RMSD. (D and E) Interactions between lisuride and the receptor (D) and between Z7757 and the
receptor (E). (F) Overlay of Z7757 and lisuride in the orthosteric pocket. (G) Comparison of the experimental
Z7757 structure and the predicted structure from the AF2 docking screen. (H) Predicted interactions from
the docked pose of Z7757 in the AF2 structure. (I) Aligned lisuride cryo-EM structure, AF2-model, Z7757
cryo-EM structure, and the lisuride crystal structure (PDB ID 7WC7) highlighting residues that showed the biggest
difference between the AF2 model and lisuride cryo-EM structures and that were used in the docking studies. In (D),
(E), and (H), dashed lines indicate potential modeled interactions between the ligand and the receptor.
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structure were recapitulated in the new cryo-
EM structure of the Z7757–5-HT2A complex.
These observations are consistent with the
idea that the AF2 model captured low-energy,
accessible states of the 5-HT2A receptor, even
though those were not seen in the lisuride–5-
HT2A cryo-EM structure used for docking in
the “experimental structure” arm of the 5-
HT2A receptor comparison.
These prospective results may be reconciled

with previous retrospective studies that have
suggested that experimental structures are su-
perior to unrefined AF2 models for ligand dis-
covery (7, 39–48). In the previouswork, known
ligands were docked against experimental
structures and AF2 models, and the former
better enriched the knowns than did the AF2
models. This is also what we observed when
we docked known ligands against the s2 and
5-HT2A receptors (fig. S2). However, retro-
spective campaigns are biased by past results
and cannot necessarily predict prospective ones.
Experimental structures are often determined
with some of the known ligands, which typ-
ically fall into only a few broad chemotypes,
and ligands discovered against one confor-
mation of a protein might not rank as well
against another low-energy conformation of
that same protein. The prospective results re-
ported here, where hundreds of topologically
unrelated chemotypes were synthesized and
experimentally tested in all four campaigns
(two against the experimental structures, two
against the AF2 models), support this idea. It
is also supported by the low overlap, even at a
scaffold level, between the active molecules
found by the AF2 and the experimental dock-
ing campaigns (Figs. 2 and 3 and fig. S4). The
conformations of the AF2 models are, for li-
gand recognition, meaningfully different from
the experimental structures and prioritize not
only different molecules but also different
families of molecules. At least for a subset of
targets, the different conformations sampled
remain relevant to ligand discovery and may
complement experimental structures for such
purposes.
Certain caveats merit mentioning. We have

focused on two targets where the AF2 confor-
mations of the ligand binding sites are either
quite close to that of the experimental struc-
ture, as for the s2 receptor, or are close with a
few important divergences, as for the 5-HT2A
receptor. There are other AF2 models that dif-
fer so much from the experimental structures
that we deem them poor candidates for dock-
ing (fig. S1). We have not explored how many
proteins fall into these different categories,
nor is it entirely clear how one would know
this a priori. The average binding site pLDDT
(predicted local distance difference test) scores
of MRGPRX4, which we deemed unsuitable
for docking, for the 5-HT2A receptor and for
the s2 receptors are 87, 95, and 95, respective-

ly, suggesting that these scores might help
rank AF2 structures that are better suited for
ligand discovery. Also, the binding sites in
both the experimental and the AF2 structures
targeted for docking ranked as ligandable (49).
Still, distinguishing between more and less
suitable AF2 structures remains an active area
of research. With respect to hit rates, although
for binding thesewere high for both structures
of both targets, the hit rates for functional
ligands—agonists or antagonists—for the 5-HT2A
receptor were low, in the 1 to 5% range. We
suspect that this partly reflects our testing
enantiomeric mixtures, because we have found
that testing pure enantiomers can be crucial
for detecting functional activity, as opposed
to simple binding (61). Finally, The AF2
models used here were predicted without
any ligand information. New tools like
RoseTTAFold All-Atom (78) and the AlphaFold
Latest (79) can cofold proteins with small
molecules, potentially improving models for
large-library docking.
These caveats should not obscure the cen-

tral observations from this study. Although ret-
rospective docking of known ligands against
the AF2 models of the s2 and 5-HT2A recep-
tors returned worse enrichment than did the
experimental structures (fig. S2), when large
libraries were docked prospectively against
AF2 models, the hit rates were comparable
to those returned by the experimental struc-
tures and were high in both cases. For both
targets, the AF2 models prioritized different
chemotypes than did the experimental struc-
tures. We speculate that the alternate con-
formations sampled by AF2 models capture
low-energy conformations, which are useful
for identifying ligands distinct from those
recognized by the experimental structures.
In the docking campaign against the 5-HT2A
receptor, the functional profiles of hits de-
rived from AF2 docking were no worse than
those from experimental structure docking.
Notably, three 5-HT2A receptor hits from
docking against the AF2model were subtype
selective, something not seen in the cam-
paign against the cryo-EM structure. Lastly, a
cryo-EM structure for one of the AF2-derived
agonists supported the docking prediction
and, indeed, certain details of the AF2 mod-
eled receptor conformation.We conclude that,
under the right circumstances, AF2 models
can expand the range of proteins targeted
for structure-based discovery and the breadth
of potent chemotypes discovered.

Materials and methods
Molecular docking against the experimental
structure of the s2 and 5-HT2A receptors

The docking setups of the s2 and 5-HT2A cam-
paigns were reported previously (7, 10). The
compound selection of the 5-HT2A campaign
is described in the next subsection.

Molecular docking against the AF2 structure
of the s2 and 5-HT2A receptors
The molecular docking procedures were con-
ducted using the AF2 models of the s2 and
5-HT2A receptors, specifically the AF-Q5BJF2-
F1-model_v1 for the s2 receptor and the AF-
P28223-F1-model_v1 for the 5-HT2A recep-
tor, both of which were downloaded from
the AlphaFold Protein Structure Database
(https://alphafold.ebi.ac.uk). The structures
of both receptors were protonated at pH 7.0
using Epik and PROPKA in 2021-released
Maestro. AMBER united atom charges were
assigned to both structures. For the s2 recep-
tor, E73 was modeled as a neutral residue. The
receptor was embedded in a lipid bilayer to
mimic its native environment in the endoplas-
mic reticulummembrane, followed by a 50-ns
coarse-grained molecular dynamic (MD) sim-
ulation with a restricted receptor conforma-
tion. We note that this MD simulation was
only used to define a lipid low-dielectric envi-
ronment for the receptor, which was subse-
quently used in the calculation of the molecular
electrostatic potential for the receptor; it did
not change the coordinates of the AF2 model
used in the docking, which were unrefined.
The low dielectric and desolvation volumes
were extended out 2.4 and 0.6 Å, respective-
ly. For the 5-HT2A receptor, the low dielec-
tric and desolvation volumes were extended
out from the receptor surface by 2.0 and 0.6 Å,
respectively. Energy grids for both recep-
tors were pregenerated using CHEMGRID
for AMBER van der Waals potential, QNIFFT
for Poisson-Boltzmann–based electrostatic po-
tentials, and SOLVMAP for ligand desolvation.
The spheres generated by SPHGEN in the li-
gandbinding sitewereused asmatching spheres
for docking known binders for each receptor
against each apo AF2 model. Based on the
predicted interactions from docking against apo
AF2 models, the best docked pose of known
binders for each receptor was then selected as
matching spheres for the next steps. Twenty-
seven spheres from the docked pose of PB28
were used for the s2 receptor. Eighteen spheres
of lisuride were used for the 5-HT2A receptor.
To speed up screening of 1.6 billion molecules
for the 5-HT2A receptor, the 5-HT2A matching
spheres were labeled according to charge-
charge interaction andhydrogen-bondpatterns
and grouped into four clusters via k-means
clustering for efficient searching in docking
calculations.
The docking setups for both the s2 and

5-HT2A receptors were evaluated for their
ability to enrich known ligands over property-
matched decoys. The docking performance
was evaluated using log-adjusted AUC values
(logAUC). For the s2 receptor, the enrichment
achieved a logAUC of 16 on the same ligand-
decoy set used to evaluate the docking setup
built from the experimental structure. We
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used the same “extrema” set to ensure that
molecules with extreme physical properties
were not enriched. The docking setup enriched
close to 80% monocations among the top 1000
ranking molecules. The logAUC was 36 using
10 s2 ligands against the “extrema” set. For the
5-HT2A receptor, this setup achieved a logAUC
of 1.5 using the same ligand-decoy set as pre-
paring the docking setup built from the cryo-EM
structure.On the extrema test, thedocking setup
enriched more than 90% monocations among
the top 1000 molecules, with a logAUC of 19.
Additionally, a “goldilocks” set from theDUDE-Z
web server was used to further test the setup,
resulting in a logAUCof 10. The evaluation above
confirmed the favorable docking parameters
for both receptors for launching ultralarge-
scale docking campaigns.
In the large-scale docking campaigns, 490mil-

lion cations fromZINC15 (http://zinc20.docking.
org) were docked against the s2 receptor, and
more than 1.6 billion library molecules from
ZINC20/ZINC22 (http://zinc20.docking.org and
https://cartblanche22.docking.org) were docked
against the 5-HT2A receptor using DOCK3.8.
On average, 2435 and 219 orientations were
explored for the s2 and 5-HT2A receptors, re-
spectively. On average, 180 and 340 conforma-
tions were sampled for the s2 and 5-HT2A
receptors, respectively The total calculation
timeswere 115,653 hours for the s2 receptor and
138,836 hours for the 5-HT2A receptors.
The s2 receptor AF2 campaign was processed

by the same protocol used to process the dock-
ing campaign against the s2 receptor x-ray
structure. The top-ranking 300,000 molecules
were filtered for novelty using the ECFP4-
based Tc against 2232 s1/2 ligands in ChEMBL
(https://www.ebi.ac.uk/chembl/) and 574 s2
ligands from S2RSLDB (http://www.researchdsf.
unict.it/S2RSLDB). Molecules with Tc≥ 0.35
were eliminated. The remaining 213,805 mole-
cules were filtered by three criteria: (i) total
torsion strain energy of less than eight units,
(ii) maximum strain energy per torsion angle
of less than three units, and (iii) forms a salt
bridge with D29. The last filter was imple-
mented based on LUNA (https://github.com/
keiserlab/LUNA). The remaining 57,662 mol-
ecules were clustered by the LUNA 1024-length
binary fingerprint of a Tc=0.32, resulting in
12,095 clusters. Ultimately, 81 compounds were
chosen by human inspection and 24 consecutive
ranked compounds were selected from three
rankings: the 1st, 550th, and 3925th, the same
machine picking ranks as the docking cam-
paign against the x-ray structure. In total, 153
compounds were selected, 119 of which were
successfully synthesized.
The 5-HT2A receptor campaigns against both

experimental and AF2 structures were pro-
cessed by the same protocol. The top-ranking
3.2 million molecules from both campaigns
were filtered for novelty using the ECFP4-

based Tc against 8601 5-HT2A, 5-HT2B, and 5-
HT2C ligands in ChEMBL (https://www.ebi.
ac.uk/chembl/). Molecules with Tc≥ 0.35were
eliminated. The remaining top 2.67 million
and 2.64 million molecules were filtered by
interactions with D155, S242, S239, T160, S159,
and F340 for experimental and AF2 cam-
paigns, respectively. The interaction filters
were implemented based on LUNA (https://
github.com/keiserlab/LUNA). The remaining
4480 and 1452 molecules were clustered by
the LUNA 1024-length binary fingerprint of
a Tc = 0.35, resulting in 2298 and 828 clus-
ters. Ultimately, 259 and 218 compounds were
chosen by human inspection. Two hundred
twenty-three and 161 compounds were suc-
cessfully synthesized.

Make-on-demand synthesis

All the make-on-demand molecules were
derived from the Enamine REAL database
(https://enamine.net/compound-collections/
real-compounds). See supplementary mate-
rials for synthesis procedure and character-
ization of compounds (supplementary methods
and data S3).

Competition binding in Expi293 membranes

Membranes were prepared as previously de-
scribed (7). Briefly, the human s2 receptor was
cloned into pcDNA3.1 (Invitrogen) mamma-
lian expression vector with an amino-terminal
protein C tag followed by a 3C protease cleav-
age site and transfected into Expi293 cells
(ThermoFisher Scientific) using FectoPRO
(Polyplus-transfection) according to the man-
ufacturer’s instructions. Cells were harvested
by centrifugation and lysed by osmotic shock
in a buffer containing 20 mM HEPES, pH 7.5,
2 mM MgCl2, 1:100,000 (vol/vol) benzonase
nuclease (Sigma Aldrich), and cOmplete Mini
EDTA-free protease-inhibitor tablets (Sigma
Aldrich). The lysates were homogenizedwith a
glass Dounce tissue homogenizer and then
centrifuged at 20,000g for 20 min. The pellet
was resuspended in 50 mM Tris, pH 8.0; ad-
justed to 10 mg/ml; flash frozen in liquid ni-
trogen; and stored at −80°C until use.
Competition binding reactions were done

in 100 ml, with 50 mM Tris pH 8.0, 10 nM [3H]-
DTG (PerkinElmer), and the indicated con-
centration of the competing ligand, and
supplemented with 0.1% bovine serum albu-
min to minimize nonspecific binding. Samples
were shaken at 37°C for 90 min. Afterward,
the reaction was terminated by massive dilu-
tion and filtration over a glass microfiber filter
with a Brandel harvester. Filters were soaked
with 0.3% polyethyleneimine for at least 30 min
before use. Radioactivity was measured by liquid
scintillation counting. Data analysis was done in
GraphPad Prism 9.0, with Ki values calculated
by Cheng-Prusoff correction using the experi-
mentally measured probe dissociation constant.

Radioligand binding assays
Competitive radioligand binding assays were
conducted in the National Institute of Mental
Health Psychoactive Drug Screening Program
(NIMH PDSP) using 5-HT2A membranes pre-
pared from transiently transfected human
embryonic kidney (HEK) 293 cells in 96-well
plates. Detailed assay protocols and conditions
are also available from the NIMH PDSP home-
page (https://pdsp.unc.edu/pdspweb/?site=assays)
Compounds [10 mM dimethyl sulfoxide

(DMSO) stocks] were prepared in a standard
binding buffer (50 mM Tris-HCl, pH 7.4,
containing 10 mMMgCl2 and 0.1 mM EDTA)
supplemented with 1 mg/ml fatty acid–free
bovine serum albumin and 0.1 mg/ml ascor-
bic acid. Samples were first screened at a
single concentration of 10 mM with in-plate
quadruplicate set (primary binding experi-
ment). Those with a minimum of 90% inhib-
ition at 10 mMwere subjected to concentration
response assays (12 points starting from 100 mM)
to determine binding affinity (Ki) with in-plate
duplicate set for three independent assays
(secondary binding experiment). Radioligand
[3H]-LSD was used at the final concentration
of 0.5 nM. To each well of a 96-well plate, con-
taining 25 ml of the test compounds at 50 mM,
25 ml of the radioligand was added, followed
by the addition of 75 ml of crude membrane
fractions containing the 5-HT2A receptor in
standard binding buffer. For primary binding
experiments, nonspecific binding was deter-
mined in the presence of 10 mMclozapine. The
reaction mixture was incubated at room tem-
perature for 2 hours. Receptor-bound radio-
activity was harvested by rapid filtration onto
UniFilter-96 GF/C Microplates (PerkinElmer)
using a Filtermate harvester (PerkinElmer).
The dried plateswere treatedwithMicroScint-O
liquid scintillation cocktails (PerkinElmer), and
the captured radioactivity wasmeasured using
a MicroBeta scintillation counter. Concentra-
tion response inhibition results were analyzed
using the “Binding Competitive – One site Fit
Ki” model in GraphPad Prism version 10.1.0
(GraphPad Prism).

Calcium mobilization assay

CalciummobilizationwasmeasuredusingFluo-4
Direct calcium dye (Invitrogen). To measure
calcium mobilization for 5-HT2A, 5-HT2B,
and 5-HT2C, HEK293 cell lines stably trans-
fected with each individual receptor were
maintained in Dulbecco’s modified Eagle’s
media (DMEM) supplemented with 10% fe-
tal bovine serum (FBS), 100 IU/ml penicillin,
100mg/ml streptomycin, 100mg/mlhygromycin
B, and 15 mg/ml blasticidin in a humidified in-
cubator at 37°C and 5% CO2. To induce receptor
expression, 5-HT2A, 5-HT2B, and 5-HT2C stable
cells were treated with 1.5 mg/ml tetracycline
and seeded into 384-well black plates in
DMEM supplemented with 1% dialyzed FBS
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(dFBS), 100 IU/ml penicillin, and 100 mg/ml
streptomycin at a cell density of ~15,000 cells
per well. To measure calciummobilization for
the V1A vasopressin receptor, CHO cells stably
transfectedwith the receptor weremaintained
in Ham’s F-12 media supplemented with 10%
FBS, 100 IU/ml penicillin, 100 mg/ml strepto-
mycin, and 400 mg/ml G418 in a humidified
incubator at 37°C and 5% CO2. V1A stable cells
were seeded into 384-well black plates inHam’s
F-12 media supplemented with 1% dFBS, 100
IU/ml penicillin, and 100mg/ml streptomycin
at a cell density of ~8000 cells per well.
Twenty-four hours later, cells were incu-

bated with 20 ml Fluo-4 Direct calcium dye
(Invitrogen) supplemented with 2 mM pro-
benecid (ThermoFisher) in drug buffer [1X
HBSS, 20mMHEPES, 0.1% (w/v) BSA, 0.01%
(w/v) ascorbic acid, pH 7.4] for 1 hour at 37°C
and 5% CO2, then 20 min at room temper-
ature in the dark. All drug dilutions were pre-
pared at a 3X concentration in drug buffer for
screening (3 mMor 1mMfinal concentration for
serotonin or V1A vasopressin receptor screens,
respectively) or dose-response profiling (16-
point titration) and transferred into a 384-well
drug plate. Calcium flux was quantified using a
FLIPRPENTA fluorescence imaging plate reader
(Molecular Dynamics) by first measuring base-
line for 10 s (1 read/s), then after addition of
10 ml 3X drug for 120 s (1 read/s). For an-
tagonist data, 10 ml agonist (10 nM 5-HT or
100 nM vasopressin) was added 15 min after
drug treatment to stimulate calcium mobili-
zation. Maximal raw fluorescence values over
the 120-s experiment were transformed to
fold-change relative to baseline fluorescence
(mean of the first 10 reads before drug ad-
dition) and plotted for each dose to generate
endpoint screening data or dose-response
curves. These data were normalized relative
to serotonin or vasopressin (agonist control),
clozapine (5-HT2A, 5-HT2B, and 5-HT2C an-
tagonist control), or vehicle (baseline for V1A
antagonist screen) and plotted as bar graphs
(screening data) or fit using the “log (agonist)
versus response (three parameter)” or “log
(inhibitor) versus response (three parameter)”
functions in GraphPad Prism version 10.1.0
(GraphPad Software). An activity threshold of
10% maximal agonist response or 80% maxi-
mal response after agonist stimulation (10 nM
5-HTor 100nMvasopressin in antagonistmode)
was used to identify compounds that exhibit
agonist or antagonist activity, respectively. Im-
portantly, dose-response curves for compounds
with agonist activity (≥10% maximal agonist
response at 10 mΜ) at a given receptor were
removed from antagonist mode plots.

BRET assays

BRET assays were performed to measure Gaq
protein dissociation (BRET2) and b-arr2 re-
cruitment (BRET1) as described previously

(2, 72). For Gaq protein-dissociation measure-
ments, wild-type 5-HT2A, 5-HT2B, and 5-HT2C
were cotransfected with Gaq-RLuc8, Gb3, and
GFP2- Gg9 in a 1:1:1:1 ratio in HEK293 cells
maintained in DMEM supplemented with 10%
FBS and 1% penicillin-streptomycin (pen-strep).
After 12 hours, cells were plated in 96-well
microplates in DMEM supplemented with
1% dFBS and 1% pen-strep. After 12 hours of
plating the cells, media was vacuum aspi-
rated and followed by addition of 60 ml of
assay buffer (1X Hank’s balanced salt solution
in phosphate buffered saline, 20 mM HEPES,
pH 7.4) into the wells, and plates were incu-
bated at 37°C for 10 min. After that, 30 ml of
3X drug diluted in drug buffer (assay buffer
supplemented with 0.1% fatty acid–free bovine
serum albumin and 0.01% ascorbic acid) were
added to the wells. Plates were incubated at
37°C for 10 min. Plates were then removed and
kept at room temperature for another 10 min
followed by the addition of 10 ml of coelenter-
azine 400a diluted in assay buffer at a con-
centration of 50 mM. Plates were incubated
for another 10 min at room temperature and
then read using a BMG Labtech PHERAstar
FSX with BRET2 plus optic module. For BRET1,
RLuc8 was cloned directly to the C terminus of
wild-type 5-HT2A, 5-HT2B, and 5-HT2C, and
experiments were performed as described
previously (2). HEK293T cells were cotrans-
fected with receptor, GRK2, and mVenus-
b-arr2 in a 1:1:5 ratio. BRET1 measurements
were done identically to those for BRET2,
though coelenterazine h was used instead of
coelenterazine 400a. Plates were read using a
BMG Labtech PHERAstar FSX with BRET1
plus optic module. All data were analyzed using
GraphPad Prism 9.0.

DLS

Samples were prepared in filtered 50 mM KPi
buffer, pH 7.0, with a final DMSO concentra-
tion at 1% (v/v). Colloidal particle formation
was measured using either a DynaPro Plate
Reader II or a DynaPro MS/X (both Wyatt
Technology). All compounds were screened
in triplicate at 31.6 mM. Colloidal particles
were defined as having a scattering intensity
of at least one order ofmagnitude greater than
background scattering and a hydrodynamic
radius greater than 100 nm in size (80). All
data were analyzed using GraphPad Prism soft-
ware version 9.1.1 (San Diego, CA).

MDH enzyme inhibition assays

Enzyme inhibition assays were performed at
room temperature using CLARIOstar Plate
Reader (BMG Labtech). Samples were pre-
pared in 50 mM KPi buffer, pH 7.0, with a
final DMSO concentration at 1% (v/v). Com-
pounds were incubated with 2 nM MDH for
5 min. Reactions were initiated by the addi-
tion of 200 mM nicotinamide adenine di-

nucleotide (NADH) (54839, Sigma Aldrich)
and 200 mM oxaloacetic acid (324427, Sigma
Aldrich). The change in absorbance wasmoni-
tored at 340 nm for 1 min 20 s. Initial rates
were divided by theDMSO control rate to deter-
mine enzyme activity (%). Each compound was
initially screened at 31.6 mM in triplicate. Data
were analyzed usingGraphPad Prism software
version 9.1.1 (San Diego, CA).

Protein purification

Protein purification and complex formation were
carried out as previously described (60, 67, 76).
After expression in Spodoptera frugiperda (Sf9)
the 5-HT2A receptor (with the respective li-
gand), mini-Gaq, and scFv16 were purified as
previously described. In the case of the lisuride
complex, each of the components was mixed
in a 1:1.2:1.5molar equivalent ratio of receptor:
mini-Gaq:scFv16 and allowed to incubate over-
night at 4°C. Themixturewas further purified by
Superdex 200 10/300 column in 20mMHEPES
(pH 7.5), 100mMNaCl, 0.001% (w/v) laurylmalt-
ose neopentyl glycol (LMNG), 0.0001% (w/v)
cholesterol hemisuccinate (CHS), 0.00025%
(w/v) glyco-diosgenin (GDN), 100 mM tris(2-
carboxyethyl)phosphine (TCEP), and 50 mM
lisuride. For the Z7757 structure, the 5-HT2A
receptor and mini-Gaq heterotrimer were co-
expressed using amultiplicity of infection (MOI)
of 3:1.5. Isolation of the complex was carried
out in the same way as the receptor purifica-
tion, with the addition of 500 mg of scFv16 dur-
ingmembrane solubilization. The first round of
size exclusionwas carried out in 20mMHEPES
(pH 7.5), 100 mM NaCl, 0.001% (w/v) LMNG,
0.0001% (w/v) CHS, 0.00025% (w/v) GDN,
100 mMTCEP, and 50 mMZ7757 on a Superose
6 column, and peak fractions corresponding
to the complex were collected. Each sample was
concentrated to 3 mg/ml for the Z7757 sample
or 15 mg/ml for the lisuride sample before pre-
paring grids.

cryo-EM data collection and processing

Grids were prepared by applying 3.5 ml of the
Z7757 complex or 2 ml of the lisuride complex
to glow dischargedUltrAuFoil holey gold grids
(Quantifoil, Au300-R1.2/1.3). The girds contain-
ing Z7757 were then vitrified by plunge freezing
into a 60/40 mixure of liquid ethane/propane
using a Vitrobot mark IV (FEI) set at 22°C and
100% humidity, whereas the grids contain-
ing lisuride were vitrified by plunge freezing
into liquid ethane at 18°C and 100% humid-
ity. Movies were then collected on a Titan
Krios operated at 300 keV with a K3 Summit
direct electron detector (Gatan) at a magni-
fication of 57,050×. A total of 5095 movies
were collected with 50 frames per movie over
a total dose of 50 electrons/Å2 and a defocus
range of 0.5 to 2.5 mm for Z7757. For the lisuride
complex, a total of 3282 movies were collected,
dose-fractionated over 50 frames, and recorded
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for 0.05 s per frame, resulting in a total dose of
67.78 electrons/Å2 in super-resolution mode
with a defocus range of 0.8 to 1.8 mm. The data
processing tree for the Z7757 dataset can be
found in fig. S14. In short, motion correction
and contrast transfer function (CTF) estima-
tion were done using cryoSPARC (81) and ini-
tial sets of particle picking, 2D classification,
initial models, and 3D refinement. A set of ap-
proximately 554,537 particles were then car-
ried over into Relion (82) for multiple rounds
of no-alignment 3D classification focused on
the TM domain. Subsequent rounds of NU-
Refine (carried out in cryoSPARC) and Bayes-
ian polishing (carried out in Relion) were then
performed. Once a good consensus map was
achieved from NU-refine, subsequent local
refinement with a soft mask was carried out
for both the receptor and heterotrimer in
cryoSPARC, which were then combined for a
consensus reconstruction. For the lisuride
complex, the processing tree can be found in
fig. S5. In short, the data processing was done
in cryoSPARC with a total of 2,426,824 par-
ticles extracted from the correctedmicrographs.
After 2D and 3D classification, a subset of
133,216 particles underwent homogeneous
refinement, followed by local refinements of
the lisuride-bound receptor and the hetero-
trimeric miniGq (bound to the active-state
stabilizing single-chain variable fragment,
scFv16) at resolutions of 3.1 and 2.8 Å, re-
spectively. Maps resulting from local refine-
ments were combined in Chimera to produce
the final reconstruction.

Model building and refinement

The initial model was fit using nonclassical
agonist R-69 (PDB ID 7RAN) (61). All models
were docked into the cryo-EM density using
either Chimera (83) or ChimeraX (84). Subse-
quent real-space refinement was carried out
in Phenix (85), and iterative manual fitting
and adjustments were carried out with COOT
(86). The binding pose was further validated
by using Emerald for Z7757 and the Gemspot
pipeline for lisuride (63, 77). Final model sta-
tistics were validated by Molprobity (87) (table
S2). All structural figures were visualized in
either Chimera (83) or ChimeraX (84).
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