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ABSTRACT

Computational design of protein function has made substantial progress, generating new enzymes, binders, inhibitors, and

nanomaterials not previously seen in nature. However, the ability to design new protein backbones for function—essential

to exert control over all polypeptide degrees of freedom—remains a critical challenge. Most previous attempts to design

new backbones computed the mainchain from scratch. Here, instead, we describe a combinatorial backbone and sequence

optimization algorithm called AbDesign, which leverages the large number of sequences and experimentally determined

molecular structures of antibodies to construct new antibody models, dock them against target surfaces and optimize their

sequence and backbone conformation for high stability and binding affinity. We used the algorithm to produce antibody

designs that target the same molecular surfaces as nine natural, high-affinity antibodies; in five cases interface sequence

identity is above 30%, and in four of those the backbone conformation at the core of the antibody binding surface is within

1 Å root-mean square deviation from the natural antibodies. Designs recapitulate polar interaction networks observed in

natural complexes, and amino acid sidechain rigidity at the designed binding surface, which is likely important for affinity

and specificity, is high compared to previous design studies. In designed anti-lysozyme antibodies, complementarity-

determining regions (CDRs) at the periphery of the interface, such as L1 and H2, show greater backbone conformation

diversity than the CDRs at the core of the interface, and increase the binding surface area compared to the natural antibody,

potentially enhancing affinity and specificity.
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INTRODUCTION

Molecular recognition underlies many central biological

processes. The ability to design novel protein interactions

is a stringent test of our understanding of the physico-

chemical principles that govern molecular recognition and

holds promise for creating specific and sensitive molecules

for use as therapeutics, diagnostics, and research probes.

Recent strategies in protein-binder design used naturally

occurring proteins as scaffolds on which binding surfaces

were designed.1–4 These strategies relied either on a small

number of protein scaffolds2,3 or several hundred differ-

ent scaffolds4–7 to achieve the structural characteristics

required for binding. In all cases the designed scaffolds

were treated as rigid structures with minimal perturbation

of their backbone degrees of freedom. These strategies

resulted in the experimentally validated design of homoo-

ligomers,8–12 inhibitors,4,6 and a protein purification rea-

gent.5 Several generalizations have been made about

successfully designed binding surfaces: (1) they comprise

surfaces rich in secondary structure (a-helices and
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b-sheets); (2) Interactions with the ligand are largely

mediated by hydrophobic amino acid sidechains; and (3)

The buried surface area upon binding is at or smaller

than the average for naturally occurring protein–protein

interactions (1600 Å2).13 The design of large and polar

surfaces, essential to make computational binder design

general, remains an unmet challenge.14–17

We reasoned that a key to solving the challenge of

designing large and polar binding surfaces lies with the

design of the protein backbone, since the backbone pro-

vides many additional conformation degrees of freedom

that have so far been untapped by binder-design strat-

egies. Designing backbones for function, however, is an

unsolved problem due to uncertainty in assessing the

contributions to free energy from polar groups and due

to the large conformation space open to the protein

backbone.18 As a step to address the challenge of design-

ing backbones in binders we suggest an algorithm that

uses conformation and sequence information from natu-

rally occurring proteins belonging to the same fold fam-

ily in order to constrain backbone design and amino

acid sequence choices, thereby limiting modeling uncer-

tainty while exposing a large space of conformations to

computational design. We test this approach by comput-

ing antibody models that target pre-chosen protein epi-

topes and assess sequence and backbone conformation

recovery compared to natural antibodies in complex with

the same epitopes.

Antibody structure, function, and
engineering

The key challenge in the design of backbones for func-

tion is that the designed surface needs both to bind its

target and be conformationally stable; the design of anti-

bodies for function therefore brings into focus the need

to develop methods that simultaneously optimize both

binding and stability, challenges which have hitherto

been approached by computational design sepa-

rately.7,19,20 Natural antibodies are built of sequence

blocks that alternate conserved with highly variable seg-

ments.21–23 The molecular structures of antibodies

show that the conserved segments belong to a structur-

ally homologous and rigid structure known as the frame-

work, which confers stability to the antibody, whereas

the variable segments cluster at the ligand-binding sur-

face, and are therefore termed the complementarity-

determining regions (CDRs). Despite their tremendous

binding-surface diversity, all CDRs except H3 fall into a

handful of discrete conformations termed “canonical

conformations.”22,24–26 For instance, in hundreds of

antibody molecular structures only seven conformation

variants are observed for L2.24 Each canonical conforma-

tion is characterized by key conserved residue identities,

which are important for maintaining the backbone con-

formation.21,22,24,25,27 Some other fold families, such

as ankyrin-repeat proteins and the Rossman fold, which

similar to antibodies are associated with many molecular

functions, are likewise modular, with a clear separation

between a structurally conserved region and a variable

region, where function is typically encoded.28 The ability

to design diverse backbones within fold families could

therefore have many applications.

A key attraction for protein engineering lies in anti-

bodies’ modular architecture, suggesting that a large

combinatorial complexity of well-folded backbones could

be tapped. As early as the 1980s, observations on the

structural modularity of antibodies made by Lesk and

Chothia29 proposed that synthetic antibodies could be

constructed by combining fragments of naturally occur-

ring antibodies. From this insight, Winter and co-

workers devised a method for antibody humanization, in

which CDRs from a mouse antibody were grafted onto a

human antibody framework to generate a humanized

functional antibody,30,31 opening the way to safe thera-

peutic antibody engineering. These early advances raised

excitement that the complete design of antibodies from

first principles is achievable,32 but until recently, compu-

tational tools for protein design had not matured suffi-

ciently to realize this objective.

An important advantage of computational design over

conventional protein-engineering methods has been its

ability to generate binders of specific sites of interest on

target molecules with atomic accuracy. Site-specific tar-

geting has been essential to the design of broad-

specificity influenza inhibitors, a pH-sensitive binder,

and an enzyme inhibitor.4–6 In contrast to this ability to

target specific molecular surfaces, conventional antibody-

engineering methods, such as animal immunization and

repertoire selection,33 are capable of isolating binders to

target molecules, but there is no general method to tar-

get binders to specific epitopes,34,35 hampering efforts

to generate specific binders, inhibitors, and allosteric

effectors.36–38 To be sure, in certain systems selection

methods were developed to isolate antibodies that bind

specific epitopes on target molecules39–43; yet these capa-

bilities are challenging and rely on specific properties of

the target molecule, such as naturally high antigenic vari-

ability outside the target site.44 Computational antibody

design may in future complement existing antibody-

engineering techniques, and open new avenues for gener-

ating antibodies that target specific sites and even rare

conformations on target receptors and enzymes.

Recent work on computational antibody design aimed

to increase binding affinity,45–47 identify favorable posi-

tions for experimental random mutagenesis,48 modify

binding specificity49 and increase thermo-resistance.50

An antibody design strategy was suggested by Pantazes

et al.51–53 that capitalizes on observations that antibody

CDRs exhibit canonical conformations. In this method a

representative set of antibody CDRs is designed from

canonical conformations, and then docked and designed
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to bind the target epitope. The resulting output from

this procedure is a CDR library that can be grafted on a

selected antibody framework. The AbDesign algorithm

reported below differs in three important respects from

this strategy: first, rather than segmenting the CDRs

individually AbDesign segments the antibody backbone

using junctions of high structure conservation, generat-

ing structurally compatible framework-CDR interactions;

second, AbDesign derives sequence information from nat-

ural antibodies to constrain sequence optimization to

amino acid identities that are important for the stability

of the modeled conformation; and third, AbDesign con-

ducts combinatorial backbone design, sampling back-

bones from all the natural antibodies in the structure

database, including highly homologous ones, to improve

binding affinity and antibody stability. The procedure is

general and can be adapted, in principle, to any modular

protein fold family.

MATERIAL AND METHODS

Source code and structure models
availability

The methods have been implemented within the

Rosetta macromolecular modeling software suite54 and

are available through the Rosetta Commons agreement.

All of the methods have been implemented through

RosettaScripts,55 and all scripts are available as Support-

ing Information. The ten top-ranked structure models

targeting each of the epitopes studied in this article are

provided in the Supporting Information. These models

were automatically generated, filtered, and ranked using

the methods presented below; we note that designs cho-

sen for experimental testing are typically selected from a

larger pool, visually inspected for flaws and manually

corrected prior to testing.1,2,6,7,56

Binding mode criteria

Following the Critical Assessment of PRedicted Inter-

actions (CAPRI) convention we use interface-root mean

square deviation (I_RMS) with a cutoff of 4 Å to define

which designs fail to recapitulate the natural binding

mode.57 This measure computes the Ca RMSD on all

ligand residues with atoms within 10 Å of the antibody

in a structure in which the natural and designed anti-

body structure are aligned.

Energy and structure filters

Shape complementarity (Sc) was computed using the

algorithm described in Ref. 58 implemented in

Rosetta.54 Sc ranges from 0 (no shape complementarity)

to 1 (perfect complementarity). Protein packing quality

at the antibody core and antibody–ligand interface were

calculated using RosettaHoles (Packstat).59 Antibody

designs with Sc or Packstat values <0.57 were rejected.

The binding energy is defined as the difference between

the total system energy in the bound and unbound states.

In each state, interface residues are allowed to repack. For

numerical stability, binding-energy calculations were

repeated three times, and the average was taken.

Antibody stability is defined as the Rosetta all-atom

system energy of the antibody monomer when the ligand

is eliminated from the system.

All-atom energies were calculated using the default

Rosetta energy (score12), which is dominated by contri-

butions from van der Waals packing, solvation, and

hydrogen bonding.54

Docking antibody scaffolds to the target
epitope

Each initial antibody scaffold was aligned to the natu-

ral antibody framework in the experimentally determined

molecular structure using a customized PyMol script,60

and the ligand coordinates were combined with the anti-

body scaffold model to produce a single coordinate file

used as input for design simulations. The resulting bind-

ing mode was perturbed with RosettaDock61 using low-

resolution docking (centroid mode).

Boltzmann conformational probabilities of
interface side chains

Boltzmann conformational probabilities were calculated

as described in Ref. 62. For each partner in the complex

and for each residue that contributes >1 Rosetta energy

units (R.e.u) to the predicted binding energy we iterate, in

the unbound state, over all the backbone-dependent

rotamers in the Dunbrack library defined within the

Rosetta software. For each rotamer, all residues within a 6

Å shell are repacked and minimized. The energy E of each

such state is then evaluated using the Rosetta all-atom

energy function (score12).63 The probability of the con-

formation of residue i, Pi, is then computed assuming a

Boltzmann distribution:

Pi ¼
e

2Ei
KBT

X

s

e
2Es
KBT

(1)

Where s is the rotameric state, KB is the Boltzmann

constant, and T is the absolute temperature. KBT was set

to 0.8 R.e.u. Ei is the energy of the unbound state.

Backbone-segment clustering and sequence
profiles

The antibody structures were aligned separately to the

variable heavy and variable light domains of antibody

4m5.3, (PDB entry 1X9Q).46 We then extracted the
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coordinates of the CDRs according to VL, L3, VH, and

H3 definitions (Table I) and clustered them according to

length. For L3 and H3, which show high conformational

variability,22,24,64,65 we preformed additional clustering

using BCL::cluster66 with a 2.0 Å Ca RMSD radius. The

resulting clusters were visually inspected for common

sequence motifs, and clusters that contained several dif-

ferent sequence motifs were manually split; conversely,

conformation clusters that shared sequence motifs were

merged. Clustering results in 207 H3 bins, and the top

50 clusters (by size) were used to generate the conforma-

tion representatives (algorithm, section d).

For each backbone conformation cluster we generated

a Position Specific Scoring Matrix (PSSM) of unique

sequences that belong to this cluster using the PSI-

BLAST suite67 with default parameters. In the case of

singleton backbone conformations (in H3) the BLO-

SUM62 scoring matrix is used to provide a statistical

model for tolerance to amino acid substitutions.

Code-integrity tests

The integrity of the Rosetta source code is maintained

through a set of integration tests. Antibody conformation

sampling and sequence design are maintained with three

tests: the splice_out integration test ensures that the algo-

rithm can properly extract backbone segments from the

source antibody and create a new torsion database; the

splice_in integration test checks that the algorithm can

read the torsion database and impose a new backbone

conformation onto the template antibody; and the spli-

ce_seq_constraints integration test checks that the algo-

rithm can add sequence constraints to an antibody

structure.

Algorithm performance

Following precomputation of sequence and backbone-

torsion databases a typical design trajectory takes �7 h

on an Intel Xeon 2.4 GHz CPU. The protocol is divided

into two parts. First, the complex formed between the

designed antibody scaffold (algorithm, section d) and the

target molecule is subjected to docking, design, and min-

imization (algorithm, section e); this step takes only 3

minutes; the vast majority of time is spent in the down-

stream refinement steps (algorithm, section f). To make

efficient use of computational resources AbDesign applies

energy and structure filtering before going into refine-

ment; on average, only 4% of all trajectories pass this fil-

tering. Depending on the availability of computational

resources and the magnitude of the design problem, fil-

ters at this step can be adjusted.

Checkpointing

We use checkpointing to ensure that if a design trajec-

tory is prematurely terminated due to computer resource

outage it can be resumed from the last backup point. A

PDB-formatted file containing the coordinate informa-

tion of the complex is saved to disk along with the

details on the design stage, complex stability, and bind-

ing energies, whenever a sampled backbone improves the

objective function (algorithm, section g). When AbDesign

is started it automatically checks for the existence of

checkpointing files; if those are found, AbDesign will con-

tinue from the last checkpoint. Restarting simulations

from the backup point takes <30 s.

RESULTS

AbDesign: An algorithm for combinatorial
backbone-sequence optimization in protein-
fold families

Using Figure 1 as a visual guide we present a step-by-

step description of the AbDesign process. AbDesign

addresses four related challenges: (1) Leveraging knowl-

edge from conformation and sequence databases to con-

strain design choices; (2) Encoding residue correlations

between the variable segments, which largely lack stabi-

lizing secondary-structure elements, and the framework,

which forms a tightly packed and stable structural foun-

dation; (3) Efficient sampling of the large backbone and

sequence combinatorial space encoded in a fold family;

and (4) Designing conformations and sequences that

optimize both protein stability and target-molecule bind-

ing. In the following sections we describe the different

elements of the algorithm in detail and how they relate

to these design challenges.

a. Sequence constraints from natural antibodies guide
amino acid design choices

The stability of a protein conformation relative to

unfolded and misfolded states relies on both positive

and negative design elements; whereas positive design

elements address the target conformation and are ame-

nable to modeling, negative design with respect to the

vast conformation space open to a loop is impractical

for modeling.18,70 A key advantage of computational

Table I
Comparison of CDR Definitions

CDR Chothia

CDR definitions
used for sequence

constraintsa

Segment definitions
used for PSSMs and
backbone modeling

VLb L1 L24-L34 L23-L35 L23-L88
L2 L50-L56 L46-L55

L3 L89-L97 L88-L98 L88-98
VHb H1 H26-H32 H26-H37 H25-H92

H2 H50-H58 H45-H58
H3 H95-H102 H93-H103 H93-H103

aSee Results, section b.
bIncluding CDRs 1 and 2 and intervening framework positions.
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design of proteins belonging to a diverse fold family,

such as antibodies, is that we can extract statistics

regarding amino acid choices on a per-position basis

that encode at least some of these elements, and use

these statistics to guide the design process. Moreover,

by correlating natural backbone conformations and

sequences we can classify sets of natural protein-

segment sequences that fold into particular conforma-

tion classes (such as antibody canonical conformations),

and maintain for each of these classes its own unique

sequence profile.

For each segment cluster we generate a Position Spe-

cific Scoring Matrix (PSSM) using the PSI-BLAST soft-

ware package.71 The sequence constraints encoded in the

PSSMs are stringent in the antibody framework and

relaxed at the CDRs, giving sequence optimization room

to explore different residue combinations for interacting

with ligand, while maintaining the antibody’s structural

integrity. The PSSM is used during all design calculations

in two ways. First, design sequence choices are restricted

only to identities above a conservation threshold accord-

ing to the PSSM. The cutoffs are determined separately

for the binding site (PSSM score �0 for all antibody res-

idues with Cb’s within a 10 Å distance cut-off of the

ligand), CDRs (�1, Table I), and framework positions

(�2). Effectively, positions that are important for bind-

ing are allowed more room to vary from the family con-

sensus than positions in the antibody framework.

Second, the all-atom energy function is modified to

include a term that biases the sequence toward the more

Figure 1
Overview of the design protocol workflow. Briefly, structures of naturally occurring antibodies are extracted from the Protein Data Bank (PDB)68 and
aligned to a template antibody structure. Backbone segment conformations and sequences are extracted into two correlated databases: a Position-

Specific Site Matrix database (step 1) and a backbone-torsion database (step 2), where PSSMs and their respective torsion databases are linked. From
the torsion database a set of antibody conformations representing all combinations of canonical conformations is generated (step 3), docked against

the target surface (step 4) and designed for optimal binding affinity, subject to sequence constraints derived from the PSSMs (step 5). Antibodies pass-

ing structure and energy filters (step 6) are then subjected to a backbone and sequence refinement protocol (step 7): for each backbone segment (VL,
VH, L3, H3) alternative conformations are sampled from the pre-computed torsion database and designed in the context of the modeled antibody-

bound structure. The backbone conformation with the highest computed stability and affinity for the ligand is selected using fuzzy-logic design69 and
serves as input in the optimization of the next backbone segment. Finally, designs are filtered using energy and structural criteria derived from natural

antibodies (step 8). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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likely identities according to the PSSM. The bias toward

the sequence consensus is weighted 50% more strongly

away from the binding site.

b. A precomputed database of backbone conformations
for each antibody segment

Backbone-conformation sampling is computationally

demanding72–75 and despite some success76 backbone

design for function has led to conformations that devi-

ated from the original computed models.19,77 By design-

ing proteins in a conformationally highly diverse family,

such as antibodies, we can make use of hundreds of nat-

urally occurring conformation variants for each backbone

segment, where the conformations are likely to be stable

within the host protein fold. In a pre-computation step

we extract the conformations of natural antibodies (Fig.

1 step 2) and store them in a database for use during

design. 788 variable light j chains and 785 variable

heavy-chain structures are superimposed on a template

antibody (throughout this manuscript, we use as tem-

plate antibody 4m5.3, Protein Data Bank (PDB) entry

1X9Q, a high-expression, high-affinity anti-fluorescein

antibody,78 although the choice of template is arbitrary).

k variable light chains were not included in the current

database because of the relatively small number of avail-

able structures in the PDB (1300 variable j chains vs.

265 variable k chains79), although AbDesign can address

k chains without changes to the algorithm.

Next we identify positions on the protein backbone,

which are structurally highly conserved in all antibody

molecules; due to the high homology such positions can

serve as effective junctions or stems for recombining back-

bones from antibodies. Past structural analysis suggested

to use stems corresponding to each individual CDR, for

instance at the start and end of CDR1 (L24–L34, H26–

H32, Chothia numbering25), CDR2 (L50–L56, H52–H56),

and CDR3(L89–L97, H95–H102).21,22,25–27,30,47,80–84

Our preliminary in silico experiments using such stem

choices, however, resulted in structurally unrealistic

designed antibodies with poor packing between the CDR

and the framework sidechains. Instead we use the

disulfide-linked cysteines in each of the variable domains

as stems for a segment comprising CDR1 and CDR2 and

the framework region, and the second disulfide-linked cys-

teine and a conserved position at the end of CDR3 (posi-

tion numbers 100 in the variable j domain 103 in the

variable heavy domain,25,26 Fig. 2) as the stems for the

CDR3 segments; these stems are very well aligned in all

antibodies of known structure (Fig. 2). The genomic

recombination of the V and (D) J genes occurs at a vari-

able position C-terminally to the second cysteine in each

variable domain, but the genomic-recombination sites are

structurally poorly aligned in a set of diverse antibodies

compared to the disulfide-linked cysteines, which therefore

provide more favorable junctions for joining conformation

fragments.

By using segment boundaries that are close to the V

(D) J genomic segmentation we directly embody confor-

mation and sequence correlations between the CDRs and

the framework that were refined by natural selection,

encoding both local and global sequence–structure

Figure 2
Natural V (D) J gene segmentation versus conformation segmentation used in AbDesign represented on the 4m5.3 (PDB entry 1X9Q) antibody.

AbDesign segments the antibody structure at the disulfide-linked cysteines and in a structurally conserved position at the end of CDR3 (stem posi-

tions are underlined). Natural antibody recombination follows a similar, but not precisely the same, segmentation (bars above sequence and the V,
D, and J labels). Sequence and structure are color-coded by conformation segments (red: CDRs L1, L2, and framework, green: L3, blue: H1, H2,

and framework, yellow: H3). Gray segments are only subjected to sequence, rather than backbone optimization.
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relationships. As a concrete example for the importance

of the correlations between conformations and sequences,

the H3 backbone cluster H3.15.8 (Supporting Informa-

tion Table SI) is in an extended conformation, while the

conformation from the cluster H3.16.5 is kinked85; the

two clusters’ sequence profiles are correspondingly char-

acterized by different amino acid conservation patterns

(Fig. 3), which are encoded in the respective PSSMs used

during design.

For each segment (VL, L3, VH, and H3) of each of

the natural antibodies in our database we extract the

backbone dihedral angles (U, W, and X) from the source

antibody and replace the segment in the template with

the source segment’s dihedral angles (Fig. 1, step 2),

introducing a main-chain cut site in a randomly chosen

position in the inserted segment. Where the inserted seg-

ment is longer than the template antibody segment, resi-

dues are added to the model using idealized bond

lengths and angles. We then refine the main chain using

cyclic-coordinate descent (CCD),74 small, and shear

moves, as implemented in the CCD mover in Rosetta.

During refinement the standard Rosetta all-atom energy

function (score12)63 is modified by the addition of an

energy term that favors closing the main-chain gap, and

harmonic restraints that bias the Ca positions and the

backbone-dihedral angles of each modeled amino acid to

the values observed in the source antibody to minimize

deviation from the source conformation. CCD alternates

backbone moves with combinatorial amino acid side-

chain packing. During packing steps we also allow com-

binatorial stochastic sequence optimization in the entire

modeled segment and in a 6 Å shell surrounding the seg-

ment subject to amino acid constraints derived from the

antibody PSSM. At the end of CCD we compute the

root mean square deviation (RMSD) of the modeled seg-

ment from the source segment and if it exceeds 1 Å or if

the main-chain gap score is >0.5 we repeat the proce-

dure. Segments that fail to meet the criteria above after

10 trials are discarded from further consideration.

Although CCD was originally conceived as a method for

loop closure,74 here we find that, guided by coordinate

and dihedral constraints from naturally occurring seg-

ments, CCD effectively refines segments up to 74 amino

acids long to the RMSD and main-chain gap criteria

Figure 3
Sequence and conformation coupling during design. During design of a new backbone the PSSMs used to constrain sequence choices are altered. In

this example, the H3 backbone segment from antibody 5G9 (PDB entry 1AHW) is modeled in the context of the 4m5.3 antibody (PDB entry 1X9Q).

Web-logos for the two conformation segments are shown on the right, revealing different amino acid conservation patterns, which are important for
the structural integrity of the modeled segment. For instance, the H3 backbone conformation from 1X9Q is in an extended conformation, whereas the

imposed H3 backbone conformation is kinked,85 and characterized by a hydrogen bond between the conserved stem Trp (Trp103, Chothia number-
ing) Ne1 atom and a carbonyl oxygen (Met100, Chothia numbering). The conserved salt bridge between Arg94 and Asp101 is similarly frequently

observed in kinked conformations. Surrounding residues in a 6 Å shell around the inserted backbone segment are also designed and repacked under
sequence constraints to accommodate the new backbone conformation. In this example, residues Phe27 and Tyr32 from the heavy chain and residue

Tyr32 from the light chain are repacked to avoid clashes with the designed H3 conformation. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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above within, on average, 1.2 attempts. Given the above

selection criteria, the natural backbone conformations

are fitted onto the template scaffold in the majority of

antibody entries in our database, ranging from 74% of

the VH segments to 96% of L3 segments. Each trajectory

takes on average 4.6 hours on an Intel Xeon 2.4 GHz

CPU. Backbone dihedral angles of successfully fitted seg-

ments are recorded in a backbone torsion database for

subsequent use during design (Supporting Information

Table SII).

c. Design subject to sequence constraints derived
from natural antibodies

In sections (a) and (b), above, we precomputed corre-

lated PSSM and backbone-conformation databases. During

design we load the pre-computed PSSM matrices associated

with the current conformation (4 PSSM segments, one for

each backbone segment), and combine them to generate a

single PSSM matrix for the entire antibody. Whenever a dif-

ferent backbone conformation is sampled AbDesign replaces

the relevant PSSM matrix associated with the swapped seg-

ment, automatically synchronizing the sequence constraints

with the backbone conformation.

For efficiency, at different phases of design different

sets of residues are subjected to combinatorial sequence

optimization. For instance, several initial design phases

only optimize the ligand-binding surface, whereas at the

final stages of design there are several steps of sequence

optimization over all antibody positions. Sequence con-

straints (section a) considerably reduce the combinatorial

design problem: in a representative case, the latter step

of full design over a 230 amino acid antibody variable

fragment has a total of �10117 different possible

sequence combinations, equivalent to full combinatorial

design of only 93 positions; increasing the PSSM cutoffs

would further reduce this combinatorial space.

d. A representative set of antibody conformations

Combining the four antibody segments (VL, L3, VH,

and H3) using all backbone conformations extracted in

section (b) above would result in a prohibitively large

library of antibody scaffolds for design. Observations

made by Chothia and coworkers,22,24 however, high-

lighted that each antibody backbone segment other than

H3 falls into a handful of canonical conformations. We

start the design process by generating a library of repre-

sentative antibody backbones that spans the space of these

canonical conformations plus a set of 50 H3 backbone

conformations (Fig. 1, step 3). We extract the conforma-

tion mean from each cluster and reduce the number of

representative structures further by eliminating similar

conformations by visual inspection. This procedure results

in 5 (VL) 3 2 (L3) 3 9 (VH) 3 50 (H3) 5 4500 non-

redundant conformation representatives (Supporting

Information Table SIII), exceeding the number of solved

antibody structures (Methods). All sequence and confor-

mation information from the template antibody is elimi-

nated in constructing the conformation representatives,

except for the relative orientation of the disulfide-bonded

cysteines in the variable light and variable heavy domains.

In other protein fold families, where canonical conforma-

tions have not been characterized, automated clustering of

backbone conformations can be employed to generate the

reduced set of conformation representatives.24

e. Low-resolution docking and sequence design

Each of the 4,500 representative conformations gener-

ated in step d is aligned using PyMol60 to the natural

antibody to obtain conformations where the representa-

tive antibodies are bound to the target molecule in

approximately the same orientation as the natural anti-

body. In each design trajectory, this conformation is per-

turbed using low-resolution (centroid) RosettaDock (Fig.

1, step 4)88 to randomize the initial binding orientation

within the vicinity of the naturally observed binding

mode, and the target protein–ligand surface is repacked

to eliminate memory of the bound sidechain conforma-

tions. This procedure is in keeping with previous studies

of binder and enzyme design,7,20,89 where the target

site for binding was constrained to the one observed in

the natural complex to avoid sampling the impractically

large space of orientation and sequence open to design

of function. In the context of antibody design sequence-

structure space is still larger than in previous studies due

to the additional backbone-conformation degrees of free-

dom. Indeed, where intense experimental effort was

invested many different antibodies and epitopes were dis-

covered that target a single molecule,90 suggesting that

without restricting to the natural target epitope a poten-

tially large number of different binding modes and

sequences might result. In cases where the target epitope

or binding mode are not defined a priori docking soft-

ware, such as PatchDock91 or RosettaDock,88 can be

used to generate the initial bound conformations, as was

done in binder design applications4–6; the AbDesign

methodology can therefore be extended, in principle, to

binder design in the absence of a known antibody-bound

complex.

Following docking the antibody is designed subject to

the PSSM constraints above and ligand sidechains within

10 Å of the antibody are repacked (Fig. 1, step 5). We

then minimize the sidechain conformations on the ligand

and antibody and assess the complex using energy and

structure filters (Fig. 1, step 6).

f. Combinatorial rigid body, conformation,
and sequence sampling

In step e we optimized the sequence of the representa-

tive antibodies; in this step we also sample the antibody

backbone degrees of freedom from the torsion databases

G.D. Lapidoth et al.
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computed above (step b). For each of the four antibody

segments we randomly sample 50 different backbone

conformations from the relevant torsion database (Fig. 1,

step 7). The optimization objective function used to

select the best conformation of the 50 randomly chosen

conformations is specified in step g below. To improve

the chances of acceptance, each sampled backbone is

within a predefined sequence-length change with respect

to the input conformation, ranging from 62 for segment

types VL, VH, and L3, and 64 for H3. In this step

AbDesign rigorously samples natural backbone conforma-

tions that are similar to the initial conformational repre-

sentative antibody. Some of the sampled backbones vary

by sub-angstrom RMSD values, thereby fine-tuning the

backbone conformation.

AbDesign in effect samples combinations of naturally

observed backbone conformations from a pre-computed

menu of conformations, accessing an unprecedented com-

binatorial space of backbones for design, and addressing

an important shortcoming of current design of function

strategies, which have relied on a limited number of back-

bones (typically under 3,000).7,92,93 In a protein super-

family comprising m protein structures each segmented

into n structural fragments, a total diversity on the order

of mn backbones could, in principle, be accessed through

AbDesign; applied to the antibodies in our set, m 5 700

molecular structures and n 5 4 segments (VL, L3, VH,

and H3), leading to a total space of 1011 different back-

bones. To be sure, not all resulting backbones are physi-

cally realistic, and the stability optimization of section g

below tests that combinations of backbone fragments that

destabilize the protein are not selected.

Changing the current segment’s backbone conformation

to any other conformation in the torsion database simply

consists of imposing the backbone dihedral angles speci-

fied in the pre-computed database and can be done in

well under a second on a standard CPU, opening the way

to efficient sampling of backbone conformation space. At

each backbone-sampling step we use combinatorial side-

chain packing to design the sequence subject to the PSSM

constraints above, and repack ligand residues within 10 Å

of the antibody. We then simultaneously minimize the

sidechains on the ligand-binding surface and antibody and

rigid-body orientation of the antibody relative to the

ligand and the antibody heavy chain relative to the light

chain. We repeat this design-minimization cycle three

times starting with a soft-repulsive potential and ending

with the standard all-atom energy function (score12). We

then use the rotamer trials-minimization procedure,

whereby single sidechains are selected at random, packed,

and minimized to improve sidechain packing in the anti-

body core and in the antibody–ligand interface.

g. Optimization of ligand binding and protein stability

A key challenge in protein design of function is that the

protein needs to be both stable in its designed conforma-

tion and bind its target molecule.18 AbDesign implements

a novel multiconstrained optimization scheme, fuzzy-logic

design,69 to select the designed backbone segments that

best optimize ligand-binding energy and antibody stability.

As explained in the previous step, for each of the four

backbone segments (VL, L3, VH, and H3) we randomly

sample 50 backbone conformations derived from that seg-

ment’s torsion database (section f), compute the binding

energy (EB) and stability (ES) of the redesigned antibody,

and transform each according to the following sigmoid

function:

f ðEÞ ¼ 1

11eðE2oÞs (2)

Where E is either the binding energy (EB) or the

energy of the unbound antibody (ES), o is the sigmoid

midpoint, where f(E) assumes a value of 1=2 and s is the

steepness of the sigmoid around the midpoint. The sig-

moid approaches values of 1 at low energies and 0 at

high values. Before sampling conformations for each of

the segments, parameter o in Eq. (1) is automatically

reset to the energy value of the currently designed anti-

body, so both sigmoids are close to their midpoints at

the start of refinement of each segment. The optimiza-

tion objective function is the product of the two sig-

moids: o 5 f(ES) 3 f(EB), resulting in values approaching

1 when both ES and EB are low and values approaching

0 if either one of the energy criteria is high. The effect of

optimizing this objective function is to find a backbone

conformation that is both sufficiently stable and high

affinity. For instance, a backbone conformation that

improves binding energy by 10 Rosetta energy units

(R.e.u.) has a transformed sigmoid value of 0.99, and

improved stability by 10 R.e.u. (transformed value of

0.97), the product (ES x EB) equals 0.963, would be pre-

ferred to a backbone conformation that improves the

binding energy by 1 R.e.u (transformed value of 0.61)

and the stability by 30 R.e.u (transformed value 0.999,

product equals 0.6) [Fig. 4(A)]. By optimizing this func-

tion during combinatorial backbone design binding

energy and antibody stability improve by on average 100

R.e.u. and 5 R.e.u., respectively, relative to the starting

designed scaffold antibody [Fig. 4(B,C)]; thus, combina-

torial backbone sampling and fuzzy-logic design can con-

siderably improve two of the most important parameters

for design of function.

h. Structure and energy filters derived
from natural antibodies

At the end of the design simulation we filter antibody

structure models using four parameters: predicted bind-

ing energy, buried surface area, packing quality between

the antibody’s variable light and heavy domains and the

bound ligand,59 and shape complementary58 between

the antibody and bound ligand (Fig. 1, step 8). Cutoffs
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for each of these parameters are derived from a set of

303 natural antibody–protein complexes (Supporting

Information Table SIV) extracted from the PDB68 using

the Structural Antibody Database (SabDab)79(Fig. 5).

Structural characteristics of designed
antibodies

To test AbDesign’s performance and highlight areas for

future improvement, we selected a set of nine high-

affinity (Kd< 20 nM), medium-to-high crystallographic

resolution (�2.5 Å), protein-binding antibodies from

SAbDab79 (Table III) as targets for design. For each nat-

ural antibody–protein complex we retain only the natural

binding orientation, and eliminate all antibody sequence

and backbone information; sidechains on the target mol-

ecule binding site are allowed to repack and minimize, in

keeping with previous design of function studies.7,20

The natural antibody set comprises human antibodies

Fab40,D5 neutralizing mAb, and BO2C11 (PDB entries:

3K2U94 2CMR,95 1IQD,96 respectively), murine anti-

bodies E8, D1.3 mAb,F10.6.6, JEL42, and 5E1 Fab (PDB

entries: 1WEJ,97 1VFB,98 1P2C,99 2JEL,100 3MXW101),

and the humanized murine antibody D3H44 (PDB entry

1JPS102). The ligand targets comprise convex (2JEL,

1IQD), flat (1P2C), and concave (3MXW) surfaces, con-

taining helical (2CMR), sheet (1JPS), and loop (1P2C,

3K2U, 1IQD) secondary-structural elements. The confor-

mation propensities in our dataset mirror those of

protein-binding j antibodies in the PDB (Supporting

Information Table SV): eight antibodies in the set use

the H1.14_H2.15 backbone conformation in the VH

backbone segment (compared to 80% out of all protein-

binding j antibodies in our database), D1.3 mAb belongs

to H1.14_H2.14 (14%). Antibodies E8, D1.3 mAb, 5E1,

D5, D3H44, Fab40, and F10.6.6 use L1.11_L2.8 (82%),

antibody JEL42 uses L1.16_L2.8 (2%) and antibody

BO2C11 uses L1.12_L2.8 (3%). All antibodies in the set

use the L3.10.1 conformation, which dominates natural

j light chains (86%). The H3 lengths in the set range

from 7 (F10.6.6, Kabat and Chothia length25,26) to 10

(Fab40 and D5) (7%, 8%, 22%, and 13%, respectively).

A broader study would be needed to cover the full extent

of antibody conformation diversity, particularly for H3.

We filter resulting designs using metrics developed to

assess structure models, including binding energy, anti-

body stability, shape complementarity, packing statistics,

and buried surface area. To rank the final design models

we use only computed binding energy, and contrast the

highest-affinity design with the target natural antibody,

bound to the same epitope, according to the following

structure and energy criteria: sequence identity, Ca

Figure 4
Antibody affinity and stability optimization using fuzzy-logic design.69 (A) Plot of the fuzzy-logic objective function, which is the product of the

stability and binding sigmoids [Eq. (2)]. A transformed value of a 210 R.e.u change in binding and stability is preferred to a 230 R.e.u change in
stabilty and a 21 R.e.u change in binding. The product of the two transformations gauges the effect of the incorporated segment on antibody sta-

bility and target affinity relative to the baseline score (of the best-scoring antibody structure so far). (B and C). Comparison between the stability
and binding energy of a set of 222 designed antibodies before and after refinement (algorithm, section f). The x axis is the calculated energy

(R.e.u) of the antibody-target complex after sequence optimization (algorithm, section e) and before refinement. y axis is the designed antibody
energy (R.e.u) after the backbone refinement phase (algorithm, section f). [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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RMSD, interface shape complementarity (Sc),58 packing

statistics,59 buried surface area, binding energy (Fig. 5),

and backbone-conformation clustering. The distributions

of natural and filtered designs along the four parameters

are similar, except in shape complementarity, which

tends to be lower in designed complexes than in the nat-

ural ones. This is a general trend for designed complexes,

which reflects the challenge of achieving the subtle steric

complementarities seen in natural binders. Even though

the design trajectories start from a binding orientation

similar to the experimental bound complex, during

design some antibodies migrate and bind at other sites.

For the purposes of recapitulation analysis we eliminate

designed antibodies with interface RMSD57 values >4 Å.

Subject to the above selection criteria, six out of the

nine natural antibodies in our study set select H3 and L3

CDRs of the same length as the natural antibody targets;

of those six, five select fragments belonging to the same

conformation clusters as those of the target natural anti-

body and four are at the top 10% ranking in terms of

computed binding energy (Table III). Generally, designs

tend to high buried surface area (>1800 Å2), suggesting

that AbDesign is biased toward large interfaces; with

larger binding surfaces computed binding energy rises

and the number of conformations and sequences that are

compatible with forming favorable inter-chain contacts

drops, thereby increasing the probability of recovering

the natural conformation.

To focus on the atomic details of designed antibodies we

consider antibodies that target the same surface as the

humanized anti-tissue factor antibody D3H44 (PDB entry

1JPS) and the anti-sonic hedgehog protein 5E1 (PDB entry

3MXW). In preliminary simulations we noticed that the

tissue-factor targeting designs used backbone conformations

for H3 that were derived from naturally occurring anti-

tissue factor antibodies; to eliminate bias, we removed anti

tissue-factor entries from the backbone conformation data-

set, and repeated the analysis. All backbone conformation

segments comprising the designed antibodies belong to the

same backbone conformation clusters as the experimentally

determined structure of 1JPS (L1.11_L2.8, L3.10.1, H1.14_

H2.15, H3.16.5) and 3MXW (H1.14_H2.15, H3.18.17,

L1.11_L2.8, L3.10.1) (Fig. 6). The designs’ backbone con-

formations show a high level of agreement with the natural

antibodies (CDR Ca RMSD between design and natural

antibody is <1 Å for all six CDRs; Table IIII). Previous

Figure 5
Energy and structure criteria used to filter designed antibody structures. In the final step of AbDesign we filter the designed antibodies according to

four parameters: predicted binding energy, buried surface area, shape complementarity (Sc58) between antibody structure and ligand, and packing
quality (using RosettaHoles59) between the variable light and heavy domains and the ligand (see Methods). Cutoffs (green dashed lines) were derived

from a set of 303 natural protein-binding antibodies (Supporting Information Table SIV). Antibody designs (purple) that passed all filters are com-

pared to the natural protein-binding antibodies (gold). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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studies noted that successfully de novo designed binding

surfaces tended to be apolar and use regions high in

secondary-structure content,16 raising the question whether

the all-atom energy function correctly balances contribu-

tions from hydrogen bonding, solvation, and electrostatics

that are crucial for designing polar surfaces.18 It is therefore

encouraging that in some cases designed antibodies capture

the extensive hydrogen bonding across the interface as seen

for example in the highest predicted binding energy

designed anti-tissue factor antibody (Fig. 7). Designed

long-range interactions within the core of the variable

domain, between the framework and the hypervariable

CDRs, show the same characteristic hydrogen bonding, van

der Waals, and aromatic stacking interactions observed in

the natural antibodies from which the segment was

extracted (Fig. 8). The results demonstrate that when con-

fined to choosing from naturally existing backbones and

subject to sequence constraints the all-atom energy function

is capable of designing polar binding surfaces and the pro-

tein core, which provides structural stability to these surfaces.

Although segments from the nine natural antibodies

were included in the conformation databases used during

design the natural backbone conformations were not

selected by AbDesign in the majority of final high-scoring

models. The designed segments are quite far from the

germline compared to naturally occurring segments,

ranging from 50 to 85% in designs (Table IIII), com-

pared to 80–100% in natural antibodies, suggesting that

design could sample parts of sequence space that are

inaccessible to natural antibody diversification processes.

The ability to design antibody variants using backbone-

conformation segments from germline genes other than

those used in natural binders suggests that the conforma-

tion data encoded in the PDB are redundant, which may

be important for fine tuning the backbone to the target

site.

The ability to sample and design many realistic back-

bone conformations can be used to highlight where

design may be useful to engineering, and areas for

improvement in design methodology. For some targets

AbDesign selects models with backbone conformations

similar to the natural antibody, but ranks these models

poorly in comparison to others. In the case of the anti-

lysozyme antibody F10.6.6 (PDB entry 1P2C) the natural

Figure 6
Antibody designs have similar backbone conformations to natural antibodies that target the same surface. Comparison between the backbone con-

formation of designed (magenta) and natural (orange) antibodies targeting to the same surface. (A). The anti-tissue factor protein (D3H44, PDB
entry 1JPS). Ca RMSD between design and natural antibody is 1.1 Å and ligand interface RMSD is 2 Å. (B). The anti-sonic hedgehog protein

(5E1, PDB entry 3MXW). Ca RMSD between design and natural antibody is 1.1 Å and ligand interface RMSD is 2.7 Å. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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antibody buries a relatively small surface area and is in

the 20th percentile of the overall predicted binding-

energy ranking (Table III). Most of the top-ranked

designs that target the same lysozyme epitope bury larger

surfaces (>1600 Å2) by using longer L1 and L3 segments

[Fig. 9(a)]. These results highlight the modularity of the

antibody scaffold, and a potentially useful strategy to

refine existing antibodies by diversifying CDRs at the

periphery of the binding site; such diversification could

increase affinity and specificity for the target or increase

antibody stability. Ideally, however, a design algorithm

should be able to consistently predict conformations that

are known to form high-affinity binding surfaces, and

better methods for ranking the designed proteins should

be developed to correctly identify experimentally verified

binders. The anti-hepatocyte growth factor activator anti-

body (PDB entry 3K2U) has a binding surface area of

1980 Å2, while the best-ranked similar-conformation

design buries only 1700 Å2 (Table III). This difference in

buried surface area is due to a change in the packing

angle between the light and heavy variable domains of

the natural and designed antibodies [Fig. 9(b)]; more

extensive sampling of the orientation of the two antibody

variable domains than done here may be necessary to

address such inaccuracies. The design examples studied

here and provided in the Supporting Information can

serve as a reference point for testing improvements in

all-atom energy functions, backbone and rigid-body sam-

pling strategies, and ranking of resulting designs.

AbDesign sequence recapitulation and
interface side chain rigidity

Sequence recapitulation rates are in the range of past

design studies; the values are not directly comparable,

however, since past design work dealt with either

functional-site design7,20,89 or the protein core,104

whereas AbDesign deals with both, and since here we

constrain sequence and backbone-conformation choices

using data from natural antibodies, whereas past design

studies used all-atom energy functions and modeled

backbones without additional restraints. Sequence within

the antibody core is recapitulated to within roughly 60–

80% identity (Table IIII), which is higher than a previous

study attempting to recapitulate native identities in the

protein core (51%104), and the binding surface sequence

identity is �30% (Table IIII), similar to a previous

protein-binding study (interface residue sequence identity

between 10 and 40%).7 Sequence identities in the CDRs

(excluding interface residues) range between 50 and 90%,

similar to sequence identities in the protein core; the

higher recapitulation rate at noninterface CDR positions

is due to the 50% higher weight on the sequence con-

straints imposed on noninterface CDR positions (algo-

rithm, section a), demonstrating how AbDesign can be

used to fine-tune the levels of divergence from the

sequence consensus based on the necessities of design of

function. In some cases residues at the interface and the

antibody core encouragingly conserve side-chain confor-

mations at atomic accuracy (Fig. 10).

Amino acid conformational plasticity has the potential

to reduce binding specificity and affinity18,62 and design

algorithms that rigidify sidechains at the binding surface

were successful in generating the first designed protein

inhibitors4–7 and small-molecule binders.93 A computa-

tional metric to assess sidechain rigidity was suggested

which computes the Boltzmann weight of the bound

sidechain conformation in the ensemble of all sidechain

conformations when the binder is dissociated from its

target.62 Designed binders using existing strategies62

typically show lower sidechain-conformation Boltzmann

weights, and presumably lower rigidity, than natural

binders. Previous design attempts, which incorporated

sidechain rigidity into the design scheme, have either

explicitly accounted for it during design6,7 or have used

this metric as an additional filter for evaluating designs

posteriori.93 We hypothesized that the sequence-structure

rules encoded in the backbone-conformation library and

Figure 7
Designed antibody-backbone atoms form polar contacts with the ligand

and supporting polar interactions within the antibody. The best pre-
dicted binding affinity design (magenta) of an anti tissue-factor anti-

body is shown with the target ligand (blue). Two polar contacts

(dashed orange lines) are formed between the L3 Ser94 amide nitrogen
and the carbonyl group of Thr167 from tissue factor and between the

Tyr92 carbonyl and the amide nitrogen of Lys169 from tissue factor.
The hydroxyl group of Tyr 96 forms an additional hydrogen bond with

the e-amino group of Lys169. In addition the conserved Gln90 forms
multiple hydrogen bonds with the backbone atoms of the L3 loop that

stabilize the conformation. [Color figure can be viewed in the online
issue, which is available at wileyonlinelibrary.com.]
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the related PSSMs implicitly constrain residues in the

designed antibody binding surfaces to more rigid choices.

A comparison of the sidechain conformational plasticity

at the binding surfaces of 303 natural high-affinity anti-

bodies (Supporting Information Table SIV) with the

designed antibodies encouragingly shows that designed

aromatic residues at the binding surface that contribute

more than 1 R.e.u to the predicted binding energy have

conformation-probability densities somewhat higher than

natural antibodies (Fig. 11). The proportion of low-

probability sidechain conformations (<5% probability),

which are unlikely to be in their intended conformation

in the unbound state, is <10%, and more than half of

the designed interface residues have sidechain-

conformation probabilities above 15%, a higher fraction

than in the set of natural antibodies.

The Boltzmann weight of the bound sidechain confor-

mation is a computed metric based on sidechain-

conformation libraries62,105 and so these results must

be treated with caution in the absence of experimental

structures of bound and unbound designs. Still, the high

computed sidechain rigidity values suggest that by opti-

mizing antibody stability and by biasing sequence opti-

mization toward the antibody sequence consensus

AbDesign may encode some elements that are necessary

for lock-and-key molecular recognition.106–109 Two

examples, the anti-tissue factor designed antibody and an

anti-sonic hedgehog protein designed antibody, demon-

strate how interface sidechain rigidity is encoded by con-

tacts between the designed aromatic sidechains and

neighboring sidechain and mainchain atoms (Fig. 11).

DISCUSSION

Despite breakthroughs in the design of new molecular

function in regions high in secondary-structural ele-

ments,2,4–6,110 successful design of function in loop

segments has been elusive.14,17,18,76,111 AbDesign uses

information encoded in large protein families, such as

antibodies, to infer local and global sequence-structure

relationships, within loops and between loops and spa-

tially neighboring structural elements, and to define rules

that guide the computational-design process. By sam-

pling combinations of compatible backbone fragments,

which have been refined by evolutionary selection, AbDe-

sign accesses an unprecedentedly large space of feasible

backbone conformations, enabling the design of fine

shape and chemical complementarities needed for design

of function.18 Although ultimate proof lies in experi-

mental validation of designed antibodies, the design

examples provided here offer promising signs that some

of the current limitations in computational design may

be addressed by this approach16: designed surfaces

Figure 8
Designed backbone fragments conserve the stabilizing interactions observed in the natural target antibody. The natural VL segment from the target

anti-gp4 antibody, D5 mAb (PDB entry 2CMR; orange), encodes long-range stabilizing interactions between CDR L1 and the framework, for
instance, using hydrogen bonds (dashed green lines), and hydrophobic-packing interactions. Though the VL segment used in the design targeting

gp4 originates from a different natural antibody (the anti-osteopontin antibody 23C3, PDB entry 3CXD, magenta) and has a different sequence

than that of the target fragment (right), the same types of stabilizing interactions are made in the designed fragment. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]
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comprise more polar interaction networks, loops, and

larger binding regions than in previous design studies.

Additionally, designed sidechains are predicted to be

more rigid than in natural antibodies, whereas previous

studies noted lower sidechain conformation probabilities

than natural sets7,62; higher rigidity could enhance affin-

ity and specificity.

A key element of the AbDesign strategy is backbone

segmentation along boundaries that are highly conserved

in homologous structures (the disulfide-bonded cysteines

and conserved positions at the end of CDR3). Existing

strategies for CDR grafting, for instance in therapeutic

antibody humanization, implant CDRs into the most

homologous target framework, but these strategies often

result in reduced binding affinity and specificity.112 Our

in silico results suggest that despite high sequence conser-

vation in the framework, the specific stabilizing contacts

formed between the CDRs and their natural frameworks

are important for the structural integrity of the antibody,

as noted by previous analysis.84 Our strategy of using

large backbone segments that contain the inter-molecular

contacts between the framework and CDRs 1 and 2 gen-

erate antibody models with well-packed cores and high

fidelity of the designed backbone for the one observed in

the source antibody, features that are likely essential for

the structural integrity of the designed segment and for

its desired activity. Two additional elements of the AbDe-

sign strategy are: first, direct coupling between sequence

and conformation constraints to ensure that the designed

sequence is compatible with its backbone; and second,

selecting from among a large combination of conforma-

tions the backbones and sequences that simultaneously

optimize both antibody stability and ligand binding. The

AbDesign algorithm is general and could, in principle, be

applied to any protein family with a sufficiently hetero-

geneous set of experimentally determined three-

dimensional structures. For example, enzymes belonging

to Rossman fold and repeat proteins such as ankyrins

share with antibodies the structural separation between a

largely conserved scaffold that stabilizes the protein and

a structurally diverse region (usually comprising loops, as

in antibodies), where specific function is encoded28;

indeed, these fold families are unusually enriched for

binding different molecules, suggesting that designing

within these fold families could generate many desired

molecular functions.

The design examples studied here show that AbDesign

can in some cases retrieve backbone conformations and

sequence elements observed in natural antibodies that

target the same site. The design algorithm does not

exclusively produce natural-like binders, however, and

additional candidates, differing in backbone conforma-

tion, sequence, and binding mode, are suggested with

equal and often improved computed affinity. These

results might be due to inaccuracies in the forcefield or

sampling method, or they could represent alternativeTa
bl
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Figure 9
AbDesign favors larger binding surfaces. (A). Comparison between the top-ranked anti-lysozyme design (magenta) and the natural antibody,
F10.6.6, PDB entry 1P2C (gold). The designed antibody uses a longer L1 (16 amino acid, compared to 11 in the natural antibody) and a longer L3

(11 amino acids compared to 10), increasing the buried surface area from 1470 to 1680 Å2. (B) Comparison between the anti-hepatocyte growth
factor activator designed antibody (magenta) and the natural antibody, Fab40, PDB entry 3K2U (orange). Structures are oriented so CDRs are

pointing toward the viewer. A 10
�

difference in the packing angle between the variable light and heavy domains creates a gap between the CDRs of

the natural antibody’s variable light and heavy domains compared to the designed one (marked by red arrows). This opening in the light and heavy
domain interface produces a larger binding surface in the natural antibody compared to the design. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

Figure 10
Designed antibodies recapitulate the identity and conformation of binding surface and core residues. The anti-tissue factor targeting design

(magenta). Tissue factor is shown in surface representation colored by vacuum electrostatics using Pymol (69). The natural antibody D3H44 (PDB
entry 1JPS) is colored orange. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

http://wileyonlinelibrary.com
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solutions to binding the target epitope; indeed, different

natural antibodies are known to bind the same epi-

tope.113 In particular, our results on the anti-lysozyme

antibody suggest that AbDesign could propose antibodies

that share large regions with natural antibodies, but that

form additional interactions to those observed in the

natural antibodies, highlighting the versatility of the anti-

body scaffold; these additional interactions could increase

specificity and affinity. AbDesign may therefore be used

to suggest variants of natural antibody binders for exper-

imental selection of higher-affinity, higher-specificity, or

higher-stability antibodies, and in the future may enable

designing antibodies completely from scratch.

By sampling many different backbone combinations

AbDesign allows us to highlight important areas for

improvement in design methodology. It is encouraging

that the AbDesign strategy is able to recapitulate sequence

and structure features seen in naturally occurring polar

and large binding surfaces, whereas previous design anal-

yses noted biases toward hydrophobic and small surfa-

ces.16 A difference between previous design algorithms

and the one reported here is that AbDesign restricts sam-

pling to a choice between physically realistic backbone

conformations and to the natural amino acid combina-

tions that are compatible with these backbone conforma-

tions; the results suggest that when confined to such

discrete choices—albeit to a very large space of such

choices—the all-atom energy function can reproduce

polar surfaces seen in natural binders, and often ranks

them highly. AbDesign is generally biased toward designs

with large binding surfaces (>1800 Å2, Table III), reflect-

ing the correlation between buried surface area and bind-

ing affinity in natural protein-protein interactions.114

The antibodies with small binding surfaces selected in

our study nevertheless have high experimentally deter-

mined affinity for their targets, such as in the case of the

anti-cytochrome c, E8 antibody (PDB entry 1WEJ) with

buried surface area upon binding of 1200 Å2 and KD of

Figure 11
High conformational rigidity of designed sidechains. (A). The sidechain conformation probabilities in the unbound state were computed using the

method in Ref. 62. AbDesign produces antibody complexes with a lower proportion of low-probability conformations (�0.05 probability) compared
to natural antibody complexes. The natural antibody complex set comprises 303 antibody–protein complexes (Supporting Information Table SIV)

extracted from the SabDab database,79 and the designed antibody set includes all designs generated and filtered by the design protocol. (B) The
designed antibody against sonic hedgehog protein. The conformationally constrained tyrosine (colored green, with rotamer Boltzmann probability

90%) is stabilized by packing against surrounding backbone atoms and the side chain atoms of Tyr53 and a hydrogen bond with Asn31. (C). The

anti-tissue factor protein designed antibody. Tyr137 on H1 (rotamer Boltzmann probability: 60%) is stabilized by packing against the backbone
atoms of H1 and H3 and the side chain of Phe132. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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16 nM.97 Despite the natural antibody’s high affinity for

its target, AbDesign prefers antibodies that bury 1500 Å2

of surface area upon binding. These results highlight the

importance of developing metrics to rank designs in

addition to stability and binding energy. Indeed, previous

design of function applications4,5,110 and our study

relied on structure selection criteria, such as intermolecu-

lar shape compementarity58 and packing defects.59 We

expect that additional filters that address the geometry of

hydrogen bonding and the ability of water molecules to

be bound and stabilized at the binding interface may

make important additional contributions to appropriate

selection and ranking of design models. An advantage of

design within a large family of proteins, such as antibod-

ies, is the availability of a large set of experimentally

determined structures of natural exemplars with which

to test different metrics, and the current results can pro-

vide a useful reference point for testing improved metrics

to accurately rank the propensity of design models to

bind their intended targets. We also note that more

extensive sampling of the rigid-body orientation between

the antibody light and heavy domains than done here

may improve the accuracy of the design calculations. The

AbDesign method is the first, to our knowledge, to com-

bine backbone, protein-core, and functional-site design,

and could be used to test and refine molecular

forcefields.115,116
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